

Review

Insights into Persistent SARS-CoV-2 Reservoirs in Chronic Long COVID

Swayam Prakash ^{1,†}, Sweta Karan ^{1,†}, Yassir Lekbach ¹, Delia F. Tifrea ², Cesar J. Figueroa ², Jeffrey B. Ulmer ³, James F. Young ³, Greg Glenn ³, Daniel Gil ³, Trevor M. Jones ³, Robert R. Redfield ³ and Lbachir BenMohamed ^{1,3,4,*}

- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, CA 92697, USA; fswayamp@hs.uci.edu (S.P.); skaran1@hs.uci.edu (S.K.); ylekbach@hs.uci.edu (Y.L.)
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, CA 92697, USA; dtifrea@hs.uci.edu (D.F.T.); figuerc1@hs.uci.edu (C.J.F.)
- Department of Vaccines and Immunotherapies, TechImmune LLC, University Lab Partners, Irvine, CA 92660, USA; ulmerjeffrey@gmail.com (J.B.U.); drjfyoung@gmail.com (J.F.Y.); gregglenn77@gmail.com (G.G.); cdmdan@gmail.com (D.G.); trevor.m.jones@btinternet.com (T.M.J.); rrredfieldmd@gmail.com (R.R.R.)
- Institute for Immunology, School of Medicine, University of California, Irvine, CA 92697, USA
- * Correspondence: lbenmoha@uci.edu; Tel.: +1-949-824-8937; Fax: +1-949-824-9626
- † These authors contributed equally to this work.

Abstract

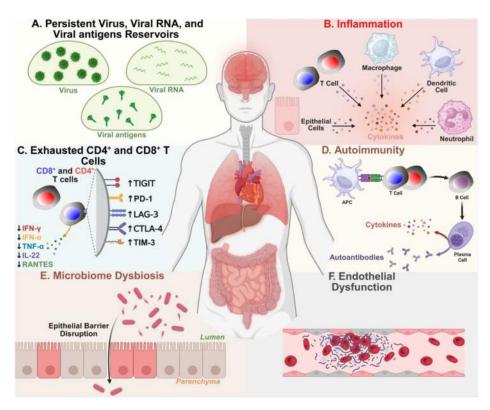
Long COVID (LC), also known as post-acute sequelae of COVID-19 infection (PASC), is a heterogeneous and debilitating chronic disease that currently affects 10 to 20 million people in the U.S. and over 420 million people globally. With no approved treatments, the longterm global health and economic impact of chronic LC remains high and growing. LC affects children, adolescents, and healthy adults and is characterized by over 200 diverse symptoms that persist for months to years after the acute COVID-19 infection is resolved. These symptoms target twelve major organ systems, causing dyspnea, vascular damage, cognitive impairments ("brain fog"), physical and mental fatigue, anxiety, and depression. This heterogeneity of LC symptoms, along with the lack of specific biomarkers and diagnostic tests, presents a significant challenge to the development of LC treatments. While several biological abnormalities have emerged as potential drivers of LC, a causative factor in a large subset of patients with LC, involves reservoirs of virus and/or viral RNA (vRNA) that persist months to years in multiple organs driving chronic inflammation, respiratory, muscular, cognitive, and cardiovascular damages, and provide continuous viral antigenic stimuli that overstimulate and exhaust CD4⁺ and CD8⁺ T cells. In this review, we (i) shed light on persisting virus and vRNA reservoirs detected, either directly (from biopsy, blood, stool, and autopsy samples) or indirectly through virus-specific B and T cell responses, in patients with LC and their association with the chronic symptomatology of LC; (ii) explore potential mechanisms of inflammation, immune evasion, and immune overstimulation in LC; (iii) review animal models of virus reservoirs in LC; (iv) discuss potential T cell immunotherapeutic strategies to reduce or eliminate persistent virus reservoirs, which would mitigate chronic inflammation and alleviate symptom severity in patients with LC.

Keywords: persistent; virus reservoirs; viral RNA reservoirs; long COVID

Academic Editor: Griff Parks

Received: 25 August 2025 Revised: 23 September 2025 Accepted: 24 September 2025 Published: 27 September 2025

Citation: Prakash, S.; Karan, S.; Lekbach, Y.; Tifrea, D.F.; Figueroa, C.J.; Ulmer, J.B.; Young, J.F.; Glenn, G.; Gil, D.; Jones, T.M.; et al. Insights into Persistent SARS-CoV-2 Reservoirs in Chronic Long COVID. *Viruses* 2025, 17, 1310. https://doi.org/10.3390/ v17101310


Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Viruses 2025, 17, 1310 2 of 35

1. Introduction

Long after the emergence of the Coronavirus disease 2019 (COVID-19) pandemic back in January 2020, many patients infected with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, continued to experience many and diverse lingering symptoms for months or even years following acute infection, known as Long COVID (LC), or post-acute sequelae of COVID-19 infection (PASC) [1–13]. A consensus definition of LC was reached in 2024 by the National Academy of Sciences as a chronic, systemic disease state with profound consequences, based on findings reported in the existing literature and patient input [2]. LC is a heterogeneous and debilitating chronic disease that currently affects at least 10 million individuals in the United States [3–13] and over 420 million individuals worldwide, including young infants, children, adolescents, and healthy adults [14–28]. With no diagnostic tests, no biomarkers, and no approved treatments currently available, the long-term global health and economic impact of chronic LC remains high and is growing [23,29,30].

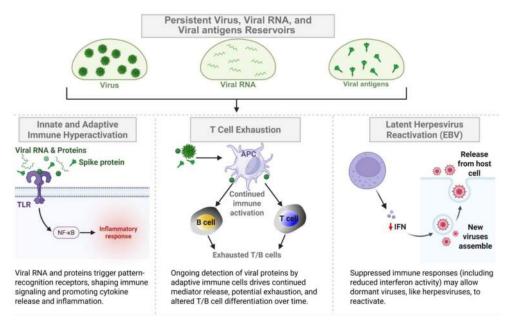

In a proportion of patients with LC, the reservoirs of virus and/or viral RNA (vRNA) may persist and replicate in multiple sites of the body, driving chronic inflammation and overstimulation of immune cells [31–37] (Figures 1 and 2). The virus reservoirs are characterized by the long-term persistence of pools of infected cells that harbor a replication-competent virus [31,33–36]. These persistent reservoirs of viruses and vRNA may be capable of being translated to continuously produce viral protein antigens, either locally in affected organs, or distantly released into the circulation, thereby inducing both local and systemic inflammation, immune cells overstimulation, as well as the exhaustion of CD4⁺ and CD8⁺ T cells in a subset of patients with LC [23,35,38–42] (Figures 2 and 3).

Figure 1. Five major mechanisms by which the virus, vRNA, and viral antigens may cause multiple and different pathologies in Long COVID patients. (**A**) A causative factor in a large subset of patients with LC is that reservoirs of virus, viral RNA (vRNA), and/or fragments may persist in multiple sites of the body. (**B**) This causes chronic inflammation, overstimulating innate and adaptive immune cells,

Viruses 2025, 17, 1310 3 of 35

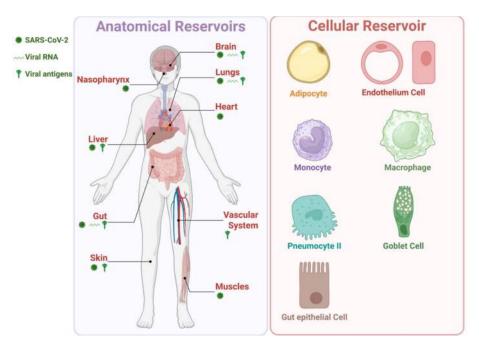
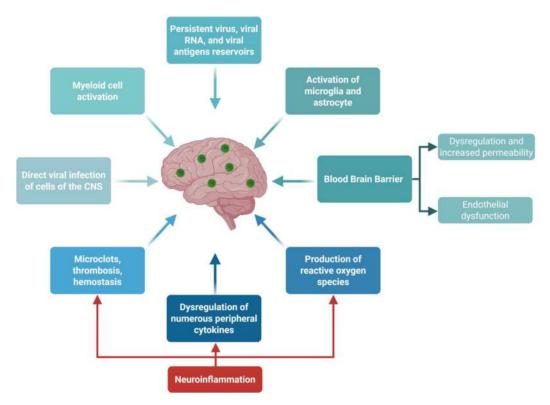

and providing continuous viral antigenic stimuli to (C) exhausted CD4⁺ and CD8⁺ T cells [31,33–36]. This may result in damage to major organ systems, leading to neurological, cardiovascular, pulmonary, muscular, and psychiatric pathologies [43,44]. (D–F) Other possible causative factors of LC include metabolic disturbances, immune dysbiosis, micro-clotting, endothelial dysfunction [38,43,45–47], and the reactivation of HSV-1, HSV-2, EBV, CMV, and HHV-6 [48,49]. This Figure is created using BioRender.

Figure 2. Persistent viruses, vRNA, and viral antigens may trigger the hyperactivation of both the innate and adaptive immune systems, leading to chronic inflammation, T cell exhaustion, and herpesvirus reactivation, which in turn can cause multiple and diverse pathologies in patients with Long COVID. The reservoirs of virus and/or viral RNA (vRNA) may persist and replicate in various sites of the body, driving chronic inflammation and overstimulation of immune cells [31–37]. Persistent reservoirs of viruses and vRNA may be capable of being translated to continuously produce viral protein antigens, either locally in affected organs or distantly released into the circulation, thereby inducing both local and systemic inflammation, immune cells overstimulation, as well as the exhaustion of CD4⁺ and CD8⁺ T cells in a subset of patients with LC [23,35,38–42]. Reactivation of herpesviruses, such as HSV-1, HSV-2, EBV, CMV, and HHV-6, may also be a driver of LC [48,49]. This Figure is created using BioRender.

To gain an accurate and in-depth understanding of the role of persistent virus and vRNA reservoirs in the pathophysiology of LC, this review (1) summarizes the current state of knowledge of persisting virus and vRNA reservoirs detected, either directly (from biopsy, blood, stool, and autopsy samples) or indirectly through virus-specific immune responses, in patients with LC and their association with the chronic symptomatology of LC, by reviewing a series of clinical reports from around the world, (2) explores the mechanism of inflammation and immune cells overstimulation and dysregulation that may be involved in LC, (3) discusses animal models of LC as a fundamental research tool for assessing mechanisms and targeting persistent virus reservoirs in multiple organs, (4) and deliberates potential therapeutic strategies that would reduce or eliminate persistent virus reservoirs, thereby mitigating chronic inflammation and alleviating symptom severity in patients with LC.

Viruses 2025, 17, 1310 4 of 35


Figure 3. Numerous organs are affected by the virus, vRNA, and viral antigens, which persist in various cells, resulting in a range of varied pathologies in patients with Long COVID. Various anatomical locations have been identified where persistent reservoirs of virus, persistent vRNA, and, in some cases, persistent SARS-CoV-2 antigens are detected in LC patients [35,38–42] (**Left**). These reservoirs are detected either directly or through virus-specific immune responses that are maintained within cells from various tissues of patients with LC, long after the acute infection is cleared [23,31,33–36,50,51] (**Right**). This figure is created using BioRender.

2. Long COVID Pathophysiology

Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), is a heterogeneous chronic disease that manifests three months after acute SARS-CoV-2 infection and persists for months to years [36,52,53]. Over 10% of SARS-CoV-2-infected individuals, including young infants, children, adolescents [14,26–28,54,55], and healthy adults, can develop LC [15-22,26,27,56-75]. LC is currently characterized by up to 200 documented symptoms that can affect 12 major organ systems, and may, in some cases, be disabling [76]. Pathologies associated with LC include neurological, cardiovascular, pulmonary, muscular, and psychiatric disorders [77–85]. Comorbidities encompass over 600 diseases that have been identified as increasing the risk for LC [86]. While these comorbidities span nearly all clinical specialties, they are strongly enriched in cognitive, cardiorespiratory, and endocrine-renal diseases [86]. Virus reservoirs in the brain or other remote organs may cause neuroinflammation and neurologic symptoms in patients with LC, including cognitive and mental disorders, as well as psychiatric manifestations and headaches [81] (Figure 4). Unexpected increases in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus, have been reported in patients with LC [87]. The underlying pathophysiological mechanisms of sex differences in the frequencies, patterns of organ system involvement, and manifestations of LC, with females being significantly more likely to develop severe LC symptoms than males [88], remain to be determined. Diverse and specific patterns of host response factors that drive the transition from acute disease to long-term chronic LC in males and females are thought to be involved in immunopathological mechanisms of LC [88,89]. Persistent systemic inflammation may lead to the production of cytokines and chemokines, including IL-6, IL-8, IL-1β, TNF- α , and IP-10 [90,91], as well as the overactivation of the immune system, T cell exhaustion, and the generation of reactive oxygen species. Increased blood-brain barrier

Viruses 2025, 17, 1310 5 of 35

(BBB) permeability may allow cytokines and chemokines to penetrate the brain, inducing neuroinflammation [92–97]. A more porous BBB may also permit direct viral invasion of the brain [92–97]. While many studies have identified characteristic symptom patterns of LC in adults and children older than 5 years, LC remains poorly characterized in children aged 0 to 5 years [28]. A recent multisite longitudinal cohort study identified differences in symptom patterns by age group (infants/toddlers [0–2 years] vs. preschool-aged children [3–5 years]) [26,27,98]. The study found that the symptoms of LC experienced by young children differed not only from those of adults and older children but also between age groups within early childhood, suggesting the need to characterize LC separately across all age ranges [26,27,98,99]. These symptoms differ from those experienced during Multisystem Inflammatory Syndrome in Children (MIS-C).

Figure 4. Long COVID affects the brain, nerves, and cognitive function, presenting neurological symptoms during LC. Virus reservoirs in the brain (represented as green dots) or other remote organs may activate microglia, leading to neuroinflammation and potentially contributing to cognitive symptoms in LC [92–97]. Elevated biomarkers of neurodegeneration in the cerebrospinal fluid of patients with LC suggest ongoing neuroinflammation in patients with cognitive and mental disorders, as well as psychiatric manifestations and headaches [81,100]. Persistent systemic inflammation may lead to the production of cytokines and chemokines, including IL-6, IL-8, IL-1 β , TNF- α , and IP-10 [90,91], as well as the overactivation of the immune system, T cell exhaustion, and the generation of reactive oxygen species. Increased blood–brain barrier (BBB) permeability may allow cytokines to penetrate the brain and induce neuroinflammation [92–97]. A more porous BBB may also permit direct viral invasion of the brain. Tissue hypoxia may occur due to microclot formation. Neurological symptoms of LC include cognition, psychiatric manifestations, headache, and others. These conditions are more commonly described in young adults and women. This figure is created using BioRender.

While the underlying causative mechanisms of LC remain to be defined, an accepted causative factor in a large subset of patients with LC, is that reservoirs of virus, viral RNA (vRNA), and/or fragments may persist and replicate in multiple sites of the body driving chronic inflammation, overstimulate innate and adaptive immune cells, and provide continuous viral antigenic stimuli to exhausted $CD4^+$ and $CD8^+$ T cells [31,33–36]. This may result

Viruses **2025**, 17, 1310 6 of 35

in damage to 12 major organ systems, leading to neurological, cardiovascular, pulmonary, muscular, and psychiatric pathologies [43,44]. However, other hypotheses regarding the causative factors of LC include metabolic disturbances, immune dysbiosis, microclotting, endothelial dysfunction [38,43,45–47], and the reactivation of non-SARS-CoV-2 viruses, such as HSV-1, HSV-2, EBV, CMV, and HHV-6 [48,49] (Figure 1).

Below, we will review the growing body of clinical evidence that persistent reservoirs of virus, persistent vRNA, and, in some cases, persistent SARS-CoV-2 antigens in multiple organs of patients with LC, which may cause chronic inflammation and dysfunction (exhaustion) of antiviral CD4⁺ and CD8⁺ T cells associated with various symptomatology of LC [35,38–42].

3. Persistent SARS-CoV-2 Virus Reservoirs in Patients with LC

A growing number of clinical reports suggest that SARS-CoV-2 viral reservoirs persist in multiple organs of patients with LC and remain active for long periods following acute infection, contributing to the long-term chronic symptoms of LC [23,101,102]. These virus reservoirs, detected either directly or through virus-specific immune responses, are maintained by the long-term persistence of a pool of infected cells that harbor reservoirs of replication-competent virus [31,33–36] (Figures 1–3). We will detail several reports that describe persisting virus reservoirs and vRNA at biopsy in patients with LC or at autopsy [101], and discuss their possible association with the symptomatology of LC.

Multiplexed imaging of post-mortem lung tissues from 12 individuals revealed evidence of viral persistence in the lungs of patients with LC, even in those with negative nasopharyngeal swabs, up to 359 days after the acute phase of the disease [103,104]. Persistent virus was detected in the appendix, skin, and breast tissues of two patients with LC, 163 and 426 days after the acute symptoms resolved [105]. A patient with LC and rheumatoid arthritis exhibited viral persistence in the nasopharynx for 6 months after the acute COVID-19 infection resolved [106]. Persistent virus reservoirs were also detected using RT-PCR, immunohistochemistry (IHC), and In Situ Hybridization (ISH) in the gastrointestinal tract (colon, gut mucosa, gut epithelium) of patients with LC, who did not clear SARS-CoV-2 after the resolution of acute infection [23,31,44,107,108]. It was proposed that long-term dysregulation of the gut in response to viral persistence may lead to myriad symptoms observed in LC [44,107,108]. Olfactory mucosa sampling at 110 to 196 days post-acute infection from long-term anosmia patients with LC, with prolonged olfactory function loss, revealed the presence of SARS-CoV-2-infected cells, along with protracted inflammation [50]. Months after acute COVID-19 resolution, nasal cytobrushes, nasal washes, and tonsillar tissue fragments were obtained from 48 children with LC undergoing testing using RT-qPCR, immunohistochemistry (IHC), and flow cytometry [109]. The study detected the presence of SARS-CoV-2 in at least one specimen of 27% of children with LC [109]. IHC for the SARS-CoV-2 non-structural protein NSP-16 indicated the presence of viral replication in 53.8% of the SARS-CoV-2-infected tissues [109]. Thus, tonsils and adenoids appeared to be major sites of persistent and replicating virus reservoir in children [109]. Several compartments of the oral cavity have been proposed as potential sites of a persistent reservoir for SARS-CoV-2 [110,111]. Evidence of SARS-CoV-2 reservoirs, accompanied by a constant stimulation of immune responses, was reported in the fungiform papillae of tongue tissue from patients with LC, 6-63 weeks after the resolution of acute COVID-19. The finding indicates a temporal association in patients between functional taste, taste papillae morphology, and the presence of SARS-CoV-2 and its associated immunological changes [112]. Few studies have detected persistent virus and vRNA in the testes and sperm of LC patients months after initial infection [113,114].

Viruses **2025**, 17, 1310 7 of 35

The duration of viral shedding and the maximum viral load during the acute phase correlate with the severity of subsequent LC, suggesting that individuals with a higher early viral burden may have a greater viral inoculum that persists at primary infection sites, such as the lungs or gut, or that seeds distant tissue sites [44,104,107,108,115–117]. The severity of the initial acute SARS-CoV-2 infection in unvaccinated, over-65, or immunocompromised patients, as well as the increased viral load during the acute phase of COVID-19 infection due to a lack of immunity, may facilitate the establishment of persistent viral reservoirs later once the acute infection clears [117]. Nearly half of the fully vaccinated patients who are hospitalized for COVID-19 symptoms were over 65 years old or immunocompromised, suggesting a role for the immune system in clearing early infections [118]. Thus, SARS-CoV-2 viral reservoirs in multiple organs of unvaccinated, over-65, or immunocompromised patients with LC may have driven chronic inflammation, immune cell overstimulation, and elevated virus-specific, exhausted T cells, which are associated with symptoms of LC [102]. Persisting virus and vRNA reservoirs are detected, either directly (from biopsy, blood, stool, or autopsy samples) or indirectly through persistent virus-specific immune responses, in patients with LC who exhibit persistent systemic inflammation months to years after the acute COVID-19 episode [119]. The dynamics of antiviral immune responses during acute infection appeared to play a role in the subsequent pathogenesis of LC, highlighting the importance of understanding early immunological markers in the natural history of LC [115]. However, the underlying mechanisms by which the virus reservoirs persist in multiple organs and lead to various symptoms of LC remain to be fully elucidated. Because the percentage of LC patients with persistent virus reservoirs, as well as the exact location and duration of these virus reservoirs in patients with LC, remains to be determined, one should not generalize persistent virus reservoirs as a cause of symptoms in all patients with LC [117].

Whether persistent virus reservoirs in patients with LC are merely an association or a cause-and-effect relationship remains to be determined in large cohorts of patients with LC and control groups and confirmed in reliable animal models of persistent virus reservoirs and LC-like symptoms, as observed in humans [120]. Whether host CD4⁺ and CD8⁺ T cells, B cells, antibodies, and innate immune cells affect the size, clonality, cellular, tissue, and organ distribution of the virus and vRNA reservoirs remains to be determined. Moreover, techniques like RNAscope, used to detect virus reservoirs in tissues of patients with LC, have sensitivity limits, especially when viral load is low or unevenly distributed, and can lead to an underestimation of viral presence. Detecting viral RNA or proteins does not necessarily indicate active virus replication. Many studies find viral fragments or antigens persisting without evidence of an infectious, replicating virus, raising questions about the nature of the reservoir and its contribution to LC symptoms. Nucleic acid-based methods can also be prone to contamination, which can affect the reliability of the results. Antigen detection methods are sometimes less sensitive or specific, requiring careful assay validation and cross-laboratory standardization. These challenges suggest that, although persistent virus and vRNA reservoirs have been identified in LC patients, more sensitive and specific methods are necessary to understand the role of these persistent virus and vRNA reservoirs in the symptomatology of LC.

4. Persistent Reservoirs of Viral RNA (vRNA) in Patients with LC

A growing body of clinical reports has also demonstrated the persistence of SARS-CoV-2 vRNA within cells from various tissues of patients with LC, long after the acute infection has cleared [23,51] (Figures 1–3).

A persistent reservoir of SARS-CoV-2 vRNA was detected in the colon, appendix, ileum, hemorrhoids, liver, gallbladder, and lymph nodes from five patients who recovered

Viruses **2025**, 17, 1310 8 of 35

from COVID-19, up to 180 days after testing negative for SARS-CoV-2 using vRNA in situ hybridization (RNAscope) [121]. The presence of vRNA was detected at autopsy in lung tissues from 44 patients with LC several months after the acute infection had resolved, suggesting that some LC may maintain a vRNA reservoir in the lungs through yet-to-bedetermined mechanisms [104,122]. Using RNAscope, persistent vRNA was colocalized in the appendix, skin, and breast tissues of two patients with LC, 163 and 426 days after the initial infection [105]. An extensive distribution of persistent vRNA was detected at autopsy throughout the brain, as late as 230 days following symptom onset in one case [101]. Persistent vRNA reservoirs were detected in the brains of patients with LC at autopsy, up to 7 months following symptom onset [101]. The dynamics of fecal vRNA shedding were analyzed in 113 patients over 10 months, and shedding was correlated with mildto-moderate acute LC symptoms [123]. Although there was no ongoing oropharyngeal vRNA shedding detected at 4 months post-acute infection in these patients with LC, 12.7% [8.5–18.4%] of patients with LC continued to shed vRNA in the feces at 4 months, and 3.8% [2.0–7.3%] shed at 7 months [123]. The severity of gastrointestinal symptoms (abdominal pain, nausea, and vomiting) correlated with fecal shedding of vRNA [123]. This study suggests that SARS-CoV-2 infects the gastrointestinal tract, and persistent vRNA reservoirs persist in the gastrointestinal tract of patients with LC, who did not fully clear SARS-CoV-2 after acute infection [123]. PCR analyses of intestinal biopsies obtained from patients with LC 4 months after the onset of COVID-19 revealed the persistence of vRNA in the small bowel of 7 out of 14 individuals, consistent with antigen persistence [124]. In another study, reservoirs of vRNA were detected in the gut mucosa ~7 months after mild acute COVID-19 in 32 of 46 patients with inflammatory bowel disease (IBD) [44,107,108]. Persistent vRNA reservoirs were confirmed by another study in the stool and spinal fluid of two patients with LC, months after the acute infection had resolved [105]. Persistent vRNA in the stool of children with Multisystem Inflammatory Syndrome in Children (MIS-C) was detected up to 62 days after resolution of acute COVID-19 [125]. Long-term anosmia patients with prolonged olfactory dysfunction, as seen in LC, exhibited the presence of viral transcripts in the olfactory mucosa, accompanied by protracted inflammation [50]. Using samples from 110 children undergoing tonsillectomy and adenoidectomy, another study provides evidence of persistent tissue-specific immunity to vRNA reservoirs in adenoid and tonsil tissues for up to 303 days after the resolution of COVID-19 [126]. This study confirms previous findings that tonsils and adenoids are major sites of persistent and replicating virus reservoir in children [109].

The mechanisms by which the virus reservoir or vRNA reservoir is maintained and may contribute to various LC pathologies remain to be fully elucidated [31]. Multimodal molecular imaging in a cohort of 24 participants, spanning time points from 27 to 910 days following acute SARS-CoV-2 infection, reveals tissue-based T cell activation and vRNA persistence in patients with LC for up to 2 years following COVID-19 [102]. T-cell hyperactivation detected in the spinal cord and gut was associated with the presence of LC symptoms [44,107,108]. This suggests that persistent vRNA, which produces viral antigens for up to 2 years after acute infection is resolved, may constantly stimulate T cells, causing them to become exhausted and thereby inhibiting their ability to clear the virus reservoir at these sites.

Since the percentage of LC patients with persistent vRNA reservoirs, as well as the exact location and duration of these vRNA reservoirs in patients with LC, remains to be determined, one should not generalize persistent vRNA reservoirs as the sole cause of symptoms in all patients with LC [117]. While vRNA may reflect fragments of the SARS-CoV-2 genome that persist but are not replication-competent, growing evidence suggests that vRNA may actually represent the entire SARS-CoV-2 genome, capable of replication

Viruses **2025**, 17, 1310 9 of 35

and producing consistent antigenic stimulation [23,35,38–42]. Thus, it is possible that persistent virus and vRNA reservoirs, which express viral antigens, as well as the residual viral antigens in multiple organs and circulation (e.g., Spike protein and Nucleoprotein), are behind the chronic inflammation, as well as T cell dysfunction/exhaustion, reported in many clinical studies of LC patients [23,35].

5. Residual SARS-CoV-2 Antigens in Patients with LC

Several reports have shown persistence of the Spike protein or its fragments within cells from various body tissues of patients with LC [23,51]. It was suggested that the Spike protein may have persisted from the initial infection. Persistent virus reservoirs and vRNA in the tissues of patients with LC can be expressed to produce viral proteins in the tissue or in circulation, inducing local or systemic chronic inflammation and causing immune cell overstimulation and T cell exhaustion [23,35,38–42]. Residual viral protein antigens (i.e., Spike protein, Nucleoprotein, and other viral antigens) persist within cells in various organs (gut, brain, tonsils, lungs, heart, or reproductive organs) and the circulation months after the acute COVID-19 infection is resolved [23,35,38–42,44,51,107,108,127,128].

5.1. Residual Spike Protein Is Associated with LC Symptoms

As of September 2025, worldwide, there have been over 789 million confirmed COVID-19 cases [15–22,117,118,129–153]. Patients who develop LC have persistent Spike protein present, exacerbated by multiple exposures to SARS-CoV-2 infections over the last 5 years.

An endoscopy study performed in 46 LC patients with inflammatory bowel disease (IBD) revealed persistent viral antigens in the gut 219 days after a confirmed COVID-19 infection, and these were associated with severe LC symptoms [44,107]. Persistent Spike protein and S1 subunit were detected in unvaccinated patients with LC compared with vaccination-matched non-LC controls [87]. Similarly, Peluso et al. detected SARS-CoV-2-specific T cell activation in the gut up to 2.5 years after acute SARS-CoV-2 infection, suggesting persistence of viral antigen in tissues [102]. Another study has shown that persistent SARS-CoV-2 peptide fragments in multiple organs may drive inflammation by mimicking the action of specific immune molecules in the body [154]. Optical clearing and imaging revealed localized accumulation of Spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting 12 months after acute viral clearance [100]. This was associated with elevated biomarkers of neurodegeneration in the cerebrospinal fluid of patients with LC, suggesting ongoing neuroinflammation in these patients. Proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes [100]. These findings suggest that persistent Spike protein in the brain may contribute to lasting neurological sequelae of LC [100]. Similarly, in another study, both Spike protein and vRNA were found in 30% of patients with LC, while none of the control individuals without LC were found to have these [155]. Case reports indicate that the Spike protein and vRNA appeared to persist in bronchoalveolar lavage from patients with LC for up to two years after acute SARS-CoV-2 infection [104,105]. Using multiplex immunohistochemistry, SARS-CoV-2 nucleoprotein was detected in the appendix, skin, and breast tissues of two patients with LC, 163 and 426 days after the onset of acute LC symptoms [105]. A persistent Spike protein and S1 subunit within CD16+ monocytes have been proposed as potential drivers of the pathophysiology of LC [156–159] (Figures 1–3).

Other case reports indicate that the Spike protein can be detected in the tissues of patients with LC up to a year after infection [93,97,105,129–153,157,158,160–165]. One study reported that the presence of recombinant Spike protein has been detected in the blood of individuals who received the mRNA Spike protein-based vaccine up to 3 months

Viruses **2025**, 17, 1310

post-vaccination, regardless of antibody titer [166]. The study employed mass spectrometry analysis of biological samples to detect the presence of specific fragments of the recombinant Spike protein in subjects who received mRNA-based vaccines [166]. The minimum and maximum times at which the Spike protein was detected after vaccination were 69 and 187 days, respectively. Other studies have also reported the persistence of the Spike protein in patients with LC for 6 [166] and 15 months post-acute COVID-19 infection, with the absence of viable virus confirmed by negative PCR and RNA assays [156]. Spike protein and nucleoprotein were both detected in the colon, appendix, ileum, hemorrhoids, liver, gallbladder, and lymph nodes from five patients who recovered from COVID-19, up to 180 days after testing negative for SARS-CoV-2 using conventional immunohistochemistry [121]. However, the study was unable to detect vRNA in some patients' tissues, possibly due to a higher mRNA degradation rate compared to protein, and the timing of detection, which occurred after recovery from acute infection [121]. Circulating Spike protein linked to extracellular vesicles with and without vRNA fragments appeared to persist in patients with LC up to one year after acute SARS-CoV-2 infection [128,155]. Finally, a study detected the Spike protein 219 days after the original positive endoscopy in the gut lining of 15 out of 132 subjects, despite the absence of replicating SARS-CoV-2 cultured from these patients' gut tissues, which showed viral antigen persistence [107]. Residual Spike, the protein S1 subunit, was detected in patients with LC 8 and 12 months after COVID-19 resolved [128,167]. These data suggest that the circulating Spike protein and its S1 subunit may serve as a potential biomarker for persistent viral reservoirs [128,167].

Many of the above studies detecting virus reservoirs, vRNA reservoirs, and residual antigens in patients with LC are limited by small patient cohorts [168]. A recent study compared residual antigens at multiple time points following acute infection in a larger cohort of pandemic-era LC patients with control adults collected before 2020 (pre-pandemic era) [168]. By using the Simoa (Quanterix) single-molecule array detection platform, the study measured residual Spike protein, S1 subunit, and nucleoprotein antigens. It showed 61 (9.2%) specimens from 42 participants (25%) contained one or more detectable SARS-CoV-2 antigens [117,168]. The most commonly detected antigen was Spike protein (n = 33, 5.0%), followed by S1 subunit (n = 15, 2.3%) and nucleoprotein [117,168]. The study provides strong evidence that virus reservoirs, vRNA reservoirs, and/or residual antigens may persist in some form or location of patients with LC for up to 14 months following the resolution of acute SARS-CoV-2 infection [117,168]. However, the study cautions that the findings provide no direct evidence regarding the persistent presence of replication-competent or transcriptionally active virus, nor that it causes LC [117,168].

As of September 2025, more than 15.9 billion COVID-19 vaccine doses (mostly Spike-based mRNA vaccines) have been administered worldwide [135,147,169]. COVID-19 vaccines not only prevent acute COVID-19 morbidity and mortality but also significantly reduce the risk of developing persistent LC symptoms [170–174]. Compared to individuals who received complete COVID-19 vaccination, unvaccinated individuals showed an increase in virus load and COVID-19 morbidity, which may have led subsequently to a significant increase in the incidence of LC [175]. The protective effect of the COVID-19 vaccines appears to be particularly robust when vaccination occurs before infection, though benefits have also been observed in preventing LC symptom progression in breakthrough cases [176–182].

Few small studies on the biodistribution patterns of the Spike protein following mRNA vaccines raised questions about whether persistent Spike in organs outside the site of administration could be responsible for some of the LC symptoms in immunocompetent patients [93,128,183–187]. While extremely rare in humans, in animal models of stroke and traumatic brain injury, the administration of Spike protein alone was sufficient to

Viruses 2025, 17, 1310 11 of 35

induce neuroinflammation, proteome changes in the skull–meninges–brain axis, anxiety-like behavior, and exacerbated outcomes [100]. Vaccination reduced but did not eliminate Spike protein accumulation after infection in mice [100]. Reports also indicate that the Spike protein may damage the endothelium in animal models, disrupt an in vitro model of the blood–brain barrier (BBB), and cross the BBB, leading to perivascular inflammation [92–97]. It was hypothesized that the Spike protein entering the brain or being expressed by brain cells could activate microglia, leading to neuroinflammation and potentially contributing to cognitive symptoms in LC [92–97]. These findings suggest persistent Spike protein at the brain borders post-vaccination may contribute to lasting neurological sequelae of LC [100]. Randomized placebo-controlled clinical trials are currently underway to confirm or refute the observations and hypotheses regarding Spike persistence at months 1, 3, 6, and 12 in vaccine and control arms, as well as to assess the benefits of COVID-19 vaccination in reducing LC symptoms.

One study showed that out of 200 unvaccinated COVID-19 convalescent individuals, 21.5% (n = 43) presented cardiac, pulmonary, muscular, and psychiatric symptoms three months post-infection, had decreased S1 subunit, S2 subunit, and nucleoprotein-specific IgG antibodies [43,188]. Other studies showed that patients with LC have circulating Spike protein and Spike protein-specific antibodies one year after infection or vaccination [128,188–191]. Similarly to the potential involvement of the Spike protein in LC, it was hypothesized that the persistence of the S1 subunit in CD16⁺ monocytes up to 245 days post-acute infection sustains chronic inflammation, which may contribute to the duration of symptoms in some vaccinated patients with LC [159]. Computational sequence analysis of the Spike protein revealed (i) a super antigen (SAg)-like motif highly similar to a Staphylococcal enterotoxin B (SEB) fragment in the Spike protein subunit S1 with in silico high affinity for binding T cell receptors (TCRs) and MHC Class II [192,193]. This prompted a hypothesis of autoimmunity leading to the development of LC [192,193], and (ii) conserved snake neurotoxin-like motifs, which may alter neuronal cell function and contribute to neurological symptoms [192,193].

A report indicates that the contribution of the Spike protein S1 subunit to lung inflammation is mediated by the NLRP3 inflammasome machinery and the release of cytokines, including interleukin-6 (IL-6), IL-1β, and IL-18 [104,194]. Matrix Metalloproteinase-9 (MMP-9) was significantly elevated in the serum of patients with LC compared to healthy controls. The Spike protein appeared to stimulate microglia in vitro to produce MMP-9, which may contribute to the development of LC [97]. In other systems, MMP-9 has been linked to various conditions, including neuroinflammation and lung diseases [97,104,195]. It was also suggested that anti-idiotype antibodies directed against the ACE2 receptor might have been induced following SARS-CoV-2 infection and vaccination, potentially contributing to the neurological autoimmune manifestations of LC [196]. However, the potential pathogenic molecular mechanisms by which the persistent SARS-CoV-2 Spike protein, or the induced Spike protein-specific antibodies, would cause some pathophysiology of LC, whether following infection or vaccination, remain to be proven [157,158].

5.2. Residual Nucleoprotein and Other Viral Antigens in Patients with LC

A lingering SARS-CoV-2 nucleoprotein was detected using immunohistochemistry in the gastric and gallbladder tissues of patients with LC 274 to 380 days after acute infection resolved [107,108]. Using RNAscope, the presence of vRNA expressing nucleoprotein was detected in the appendix, skin, and breast tissues of two patients with LC, 163 and 426 days after the resolution of acute GI symptoms [105]. Using conventional immunohistochemistry, the nucleoprotein was also detected in the gut, colon, appendix, ileum, hemorrhoid, liver, gallbladder, and lymph nodes from five patients who recovered from COVID-19,

Viruses 2025, 17, 1310 12 of 35

up to 180 days after testing negative for SARS-CoV-2 [107,108,121]. Using multiplex immunohistochemistry, residual nucleoprotein was colocalized with CD68⁺ macrophages in the appendix, skin, and breast tissues of two patients with LC, 163 and 426 days after the resolution of acute symptoms [105]. An endoscopy study performed in 46 patients with inflammatory bowel disease (IBD), 219 days after a confirmed COVID-19 infection, revealed that the viral nucleoprotein persisted in the gut epithelium in 24 out of 46 patients despite the inability to culture SARS-CoV-2 from the gut tissue of patients with viral antigen persistence [107,108]. The study reported that LC symptoms in the majority of these IBD patients correlated with persistence of residual viral antigen, but not with those without viral antigen persistence. This study suggests that SARS-CoV-2 antigen persistence in infected tissues may be involved in LC symptoms, possibly by inducing T cell exhaustion, inflammation, and immune perturbation. Months after acute COVID-19 resolved, nasal cytobrushes, nasal washes, and tonsillar tissue fragments obtained from 48 children with LC undergoing tonsillectomy were tested using IHC, which revealed the presence of nucleoprotein on the epithelial surface and in lymphoid cells in both extrafollicular and follicular regions, as well as in adenoids and palatine tonsils. This suggests that tonsils and adenoids are significant sites of persistent viral protein in children [109]. Residual nucleoprotein and Spike proteins were detected in the plasma of children with MIS-C up to 62 days after resolution of acute COVID-19 [125]. Residual nucleoprotein was detected in patients with LC 12 to 16 months after COVID-19 resolved [117,128,167].

Immunofluorescence analyses of intestinal biopsies obtained from patients with LC 4 months after the onset of COVID-19 revealed the persistence of nucleoprotein in the small bowel of 7 out of 14 individuals, consistent with antigen persistence [124]. Nucleoprotein antigen was retained in gastric and gallbladder tissues of patients with LC for months to years after acute infection was resolved. Residual SARS-CoV-2 viral antigens are detected in the gastrointestinal, hepatic, and other tissues from patients with LC [105,107,108,121]. Months after the acute infection is resolved, nucleoprotein is detected in adenoid tonsils, adenoid tissue, nasal cytobrush, and nasal washes from children. It is important to note that most of the studies above are association and correlational studies that do not directly implicate residual Spike protein or Nucleoprotein with LC symptoms.

There exist imitations in identifying residual viral antigens in patients with LC, including their relatively low abundance and the lack of biomarkers for identifying infected cells that express viral antigens in vivo. The growing body of literature that demonstrates persistent virus and vRNA reservoirs within various body tissues, along with their correlation with LC symptoms, suggests a continuous production of SARS-CoV-2 antigens in patients with LC. Patients with LC exhibited persistent systemic inflammation 12 months after the acute COVID-19 episode, characterized by increased circulating levels of organ-damage markers, suggesting a persistent antiviral immune response [119]. For instance, elevated levels of organ damage markers, such as C3 protein and anti-nuclear autoantibodies, were detected in LC patients, indicating persistent immune activation associated with tissue or organ injury [119]. This suggests a sustained immune response, possibly driven by lingering virus or vRNA elements or immune dysregulation, even after initial recovery from acute infection [119]. However, it remains to be confirmed whether the various symptomatology and inflammatory signatures of LC are a direct consequence of specific antigens that are persistently and continuously stimulating the immune system. It is likely that the profile of antigens and epitopes targeted by T cells during LC differs from those targeted by T cells in acute COVID-19. The profile of antigens and epitopes targeted by tissue-resident T cells during LC may also vary depending on the affected organs.

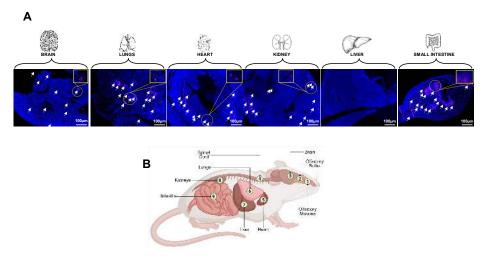
Viruses 2025, 17, 1310 13 of 35

Given the host specificity of SARS-CoV-2, few animal models accurately reproduce the natural course of viral infection, virus reservoirs, and the clinical symptomatology of LC [120,197–202].

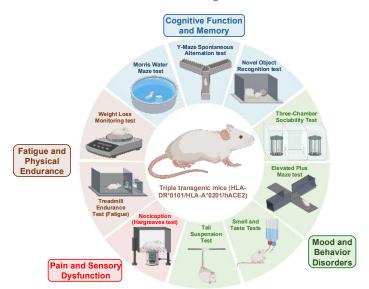
6. Animal Models of LC to Study Persistent Reservoirs of Virus and Viral RNA (vRNA)

The importance of animal models as valuable and cost-effective tools for analyzing the virus reservoir and subsequently pre-clinical testing of drugs and immunotherapeutic candidates to eliminate the virus and vRNA reservoirs needs to be underscored [120,197–202] (Figure 5). We discuss the advantages and limitations of various animal models for studying viral persistence, with an eye to using these models to test antiviral and immune-based therapeutics [120,197–202]. Animal models may help address questions such as where, how, when, and under what circumstances persistent viruses and vRNA reservoirs can be detected and eliminated [120,197–202]. Animal models of LC can provide a means to quickly screen candidate treatments, yielding a strategy for rapid optimization and prioritization (as reviewed) [89,120,197–202]. Costly and lengthy clinical trials can require months to years to obtain definitive readouts on chronic inflammatory manifestations [46,203,204]. Because the biomarkers and diagnostic tests for LC disease phenotypes remain poorly defined, animal models that are robust and reliable may be crucial for evaluating therapeutic modalities and identifying the underlying cellular and molecular mechanisms and biomarkers of chronic LC [29,89,202].

	Tissue/Organ Reservoirs	Detection Methods	Persistence Duration	Associated Phenotypes	Key References (PMID)
Syrian hamster	Lung, olfactory epithelium, brain, GI tract	RT-PCR, IHC, ISH, viral culture	Up to 42 days	Weight loss, anosmia, lung fibrosis	PMID: 37277327, PMID: 37159520
K18-hACE2 mouse	Brain, lung, GI tract, heart	RT-PCR, IHC, ISH	Up to 28 days	Neurological signs, weight loss	PMID: 33166988
Triple Transgenic HLA- A2/DR-hACE2 mouse	Brain, Lung, Heart, Kidney, Liver, Small Intestine	RT-PCR, IHC	Up to 45 days	Behavioral and Neurological signs, weight loss	This review
Mouse Adapted SARS-CoV-2 Model	Lung, Brain	RT-PCR, IHC,ISH, GeoMX DSP	Up to 120 days	Pulmonary Fibrosis, Collagen deposition, Chronic Inflammation, Anosmia	PMID: 35857635, PMID: 36680154
Rhesus macaque	Lung, lymph node, GI tract, CNS	RT-PCR, IHC, ISH, viral culture	Up to 60 days	Mild respiratory, GI, neurocognitive	PMID: 37919524
Ferret	Nasal turbinate, lung	RT-PCR, IHC	Up to 21 days	Mild respiratory symptoms	PMID: 35383204, PMID: 33273742


Figure 5. Animal models to study the role of the virus reservoir in Long COVID symptomatology and to test drug and immune therapeutics. Animal models of LC include mice [205–207]. ACE-2 transgenic (Tg) mouse models are widely used to determine the virus reservoirs [208]. HLA-A*02:01 and HLA-DR1 and ACE-2 triple transgenic mouse model susceptible to SARS-CoV-2 infections that develop 'human-like T cell responses to HLA-restricted human CD4+ and CD8+ T cell epitopes and quantifiable virus and vRNA reservoirs in multiple organs [209,210]. The Golden Syrian hamster model exhibits natural susceptibility to SARS-CoV-2, making it an excellent model for investigating the pathophysiology of LC and long-term establishment of virus reservoirs in multiple organs [120]. The ferret model is ideal for studying virus reservoirs in the lungs as the respiratory tract structure closely resembles that of humans. Non-human primates (NHPs) may be used to understand the clinical manifestations of LC and to validate the safety and effectiveness of therapeutic candidates for clearing virus reservoirs and treating LC symptoms. This Figure is created using BioRender.

Viruses **2025**, 17, 1310


Animal models are more likely to yield biomarkers for LC than humans because they allow controlled, longitudinal studies with consistent genetic backgrounds [139,211,212]. Unlike humans, animal models enable systematic analysis at serial time points post-infection, including histopathology in multiple organs, viral and vRNA persistence, and multi-omics assessments, to identify consistent pathological and molecular changes linked to LC symptoms [139,211,212]. Better-controlled comparisons between animals with and without LC, which reduce confounding factors such as genetic heterogeneity and comorbidities, are also present in human studies [139,211,212]. Animal models offer a tractable approach to identifying early, reproducible molecular signatures and pathological correlates that may later translate into human biomarkers [139,211,212]. Thus, while human biomarkers for LC remain elusive, animal models provide a powerful toolkit for identifying potential biomarker candidates under tightly controlled experimental settings [139,211,212].

Mice are the most widely used small animal model of LC due to their small size, short reproductive time, and the extensive list of related cell biology, genetic, and immunological tools, and reagents. Additionally, many LC disease symptoms, genetic susceptibility loci/genes, and phenotypic outcomes are highly reproducible between mice and humans [205-207]. The ACE-2 transgenic (Tg) mouse model, which possesses a wellcharacterized immune system, is widely used to determine the virus reservoirs and to study the role of specific genes and pathways thought to be involved in the pathophysiology of LC [208]. We recently generated a novel triple Tg mouse model of LC overexpressing human ACE-2 and human HLA class I and class II (i.e., HLA-A*0201 and HLA-DR1). This model has four attributes: (1) susceptibility to SARS-CoV-2 infections [209,210]; (2) development of both pulmonary, behavioral and neurological manifestations that mimic those seen in patients with LC; (3) development of T cell responses to HLA-restricted human CD4+ and CD8⁺ T cell epitopes from multiple SARS-CoV-2 antigens; (4) quantifiable virus and vRNA reservoirs in multiple organs. We detected persistent virus reservoirs and vRNA expressing the nucleoprotein in the lungs, brain, liver, heart, olfactory bulb, tonsils, kidney, and gut tissues of SARS-CoV-2 Delta variant-infected triple Tg mice 45 days post-infection by qPCR (Figure 6) [31,36,104]. Persistent vRNA can also be quantified by digital droplet PCR (ddPCR) from formalin-fixed paraffin-embedded (FFPE) tissue blocks [31,36,126], and (5) evaluation of the immunopathology, neuro-inflammation, and neuropathology linked to decreases in recognition memory, as measured using various established behavioral and cognitive tests, as illustrated in Figure 7 [213–217]. Thus, the triple Tg mouse model of LC enables us to test the protective efficacy of tissue-targeted drug and immunotherapy candidates, as well as to investigate the putative mechanisms driving the long-term respiratory, cognitive, and behavioral manifestations of LC. The Golden Syrian hamster model exhibits natural susceptibility to SARS-CoV-2, making it an excellent model for investigating the pathophysiology of LC and long-term establishment of virus reservoirs in multiple organs [120]. However, unlike mice, the use of hamster models is limited by the lack of immunological and genetic tools, which restrict the ability to perform advanced immunopathological studies [120]. The ferret model is ideal for studying virus reservoirs in the lungs as the respiratory tract structure closely resembles that of humans. Ferrets exhibit a natural susceptibility to SARS-CoV-2; however, the limited availability of ferret immunological and genetic tools also restricts the use of this model. Non-human primates (NHPs) are critical for understanding the clinical manifestations of LC and for validating the safety and effectiveness of therapeutic candidates for clearing virus reservoirs and treating LC symptoms. However, the use of NHPs is associated with high costs, limited availability, and complex handling requirements.

Viruses **2025**, 17, 1310 15 of 35

Figure 6. SARS-CoV-2 Reservoirs in multiple organs of 'Humanized" HLA/ACE-2 triple Tg mice with Long COVID: (**A**) Immunohistochemistry (IHC) sections of the brain, lungs, heart, kidney, liver, and small intestine were collected on day 45 post-infection with 1 × 10⁴ PFU of the Delta variant (B.1.617.2) from the severe LC group of HLA/ACE-2 triple Tg mice and stained with SARS-CoV-2 Nucleoprotein protein antibody. White arrows indicate the expression of SARS-CoV-2 Nucleoprotein in these different organs of severe LC mice. Arrows point to the virus. Data shown at 4x magnification and 20x magnification (in inner box). Most persistent virus reservoirs are visualized in the brains, lungs, and guts of HLA/ACE-2 Tg mice with severe Long COVID. Persistent virus reservoirs and vRNA expressing the nucleoprotein in the lungs, brain, liver, heart, olfactory bulb, tonsils, kidney, and gut tissues of SARS-CoV-2 Delta variant-infected triple Tg mice can also be detected by qPCR [31,36,104] or quantified by digital droplet PCR (ddPCR) from formalin-fixed paraffin-embedded (FFPE) tissue block [31,36,126]. (**B**) Illustration of the organs with virus, vRNA, and viral antigen reservoirs in mouse models. Panel B is created using BioRender.

Figure 7. Illustration of ten experimental weight loss, behavioral, cognitive, and physical endurance tests to gauge the severity of LC in SARS-CoV-2-infected HLA/ACE-2 Tg mice. The behavioral tests include the following: (1) The Tail Suspension Test, which measures a state of "learned helplessness" or depression-like behavior similar to that observed in LC patients. (2) The Y-Maze Test (YMT) commonly used to assess memory impairment and specifically issues related to spatial working memory, cognitive flexibility, and exploratory behavior in mouse models. Spatial working memory is a cognitive function that enables individuals to hold and manipulate spatial information in their minds over time. (3) The Three Chamber Social Test, which measures social recognition and memory. (4) The Three Chamber Social Novelty Test, which measures social interaction, social memory, and social preference in mice [213–217]. This figure is created using BioRender.

Viruses 2025, 17, 1310 16 of 35

7. The Path Toward Therapeutics to Target and Clear the Virus and vRNA Reservoirs, and Cure LC

Solving the 'SARS-CoV-2 reservoir problem' may be key to achieving a cure (or at least a persistent remission) for many patients with LC. The molecular drivers and biomarkers of LC symptoms may be heterogeneous and remain poorly defined [218]. Thus, industry engagement in developing therapeutics has been limited [29,31,33–36,117]. Unfortunately, the current landscape of clinical trials for LC is primarily observational, designed to understand the pathophysiology of LC [23]. There are a limited number of clinical trials testing drug therapies, and a notable lack of T cell-based immunotherapies.

Treating the persistent virus reservoir in LC may be informed by previous clinical trials targeting persistent virus reservoirs in other RNA viruses, such as human immunodeficiency virus (HIV) and hepatitis C. The viral reservoir in HIV and HCV is well-established and characterized by the persistence of replication-competent virus in specific cellular and tissue compartments [219,220]. In HIV, the reservoir consists primarily of latently infected CD4⁺ T cells and other immune cells, with integrated proviral DNA that can reactivate and produce infectious virus. This virus reservoir is stable and quantifiable, and its dynamics have been extensively studied [221]. In contrast, the dynamics of the viral reservoir in LC remain to be identified, and the clinical significance of persistent SARS-CoV-2 in immunocompetent individuals should be further characterized [222]. Moreover, while vRNA has been widely reported, the presence of replication-competent virus has not been consistently demonstrated, and the mechanisms of persistence remain unclear [222]. There is an association between viral RNA persistence and LC symptoms, but causality and the role of these reservoirs in pathogenesis remain to be established [222]. Key gaps include the development of standardized biomarkers for reservoir detection and the assessment of the impact of antiviral and immunotherapeutic interventions on reservoir clearance and symptom resolution.

7.1. Antiviral Therapies for LC

Antiviral agents like remdesivir, molnupiravir, and nirmatrelvir–ritonavir (Paxlovid) have been tested in LC with limited efficacy [23,48,52,223]. Three clinical trials have shown that administering the antiviral drug Paxlovid during COVID-19 infection yields a modest benefit in reducing the likelihood of LC [31,203,224]. However, a recent study with a large, nationally sampled cohort, a contemporary study period, and causal inference methodology, found that Paxlovid treatment during acute COVID-19 had no effect on subsequent LC incidence [225]. Some improvement in LC symptoms was reported following tocilizumab administration, especially in cases with elevated inflammatory markers [226]. JAK inhibitors have also shown promise, with recent clinical trials indicating their effectiveness in modulating the immune response and reducing the severity of persistent symptoms [227]. Molnupiravir has also been tested for lowering symptom duration and severity in patients with LC [228,229]. Early initiation of drug treatment during SARS-CoV-2 acute infection reduces virus load and is likely beneficial for LC patients, as it may have contributed to lowering virus reservoirs [230–234].

7.2. Immune Therapies to Eliminate or Reduce Persistent Virus and vRNA Reservoirs in LC

In the absence of antiviral drug therapy, virus-specific CD4⁺ and CD8⁺ T cells play a central role in controlling and suppressing viremia, virus reservoirs, and viral RNA reservoirs. While T cells appear vital in clearing the virus reservoir, to the best of our knowledge, there are currently no clinical trials for T cell-based immunotherapy that would function to clear or reduce virus reservoirs, thereby reversing the inflammatory, cognitive, and behavioral symptoms of LC. A tissue-targeted T cell-based immunotherapy

Viruses 2025, 17, 1310 17 of 35

that boosts functional tissue-resident T_{RM} cells could reduce persistent virus reservoirs, thereby addressing both systemic and organ-specific manifestations of LC.

Besides inducing or boosting the frequency and function of T cells, immunomodulatory treatments have also gained traction as a cornerstone of LC management. Cytokines, Including Interferon-Gamma (IFN-gamma), IFN-gamma-induced protein 10 (IP-10), tumor necrosis factor (TNF), IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, and IL-17A, induced by SARS-CoV-2 infection, play a crucial role in the pathophysiology and progression to LC [189]. Treatment of LC with a SARS-CoV-2 antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence has been reported [106,235-240]. The study demonstrates transient disappearance of antigen persistence and decreased antiviral and autoimmune T cell responses after nirmatrelvir/ritonavir and tocilizumab treatment. The seed meal of Perilla frutescens (P. frutescens), which contains two primary dietary polyphenols (rosmarinic acid and luteolin), has been suggested to modulate Spike protein S1 subunit-induced lung inflammation during LC [104,194,241-245]. Immune dysregulation associated with persistence of subunit S1 of the Spike protein was detected in patients with LC 8 months after COVID-19 resolved [167]. Whether the host tissue-resident CD4⁺ and CD8⁺ T cells affect the size, clonality, cellular, tissue, and organ distribution of the virus reservoir and viral RNA reservoirs remains to be determined.

The hypothesis of persistent Spike protein in patients with LC following vaccination and/or infection, together with the lack of current Spike protein-based COVID-19 vaccines to induce long-lasting protection against disease, ongoing viral transmission, or future CoV outbreaks, has raised questions about whether future immunotherapies to clear the virus reservoirs in LC should or should not include the Spike protein. Spike protein mRNA vaccines appeared to induce IgG4, whereas Spike protein vaccines and SARS-CoV-2 infection both promote IgG2. Emerging evidence suggests that an increase in IgG4 levels detected after mRNA vaccines may constitute an immune tolerance mechanism to the Spike protein, which could encourage SARS-CoV-2 infection and replication by suppressing natural antiviral responses [246]. Spike protein-induced cross-reactive IgG4 antibodies may contribute to autoimmunity, another pathophysiological mechanism that may lead to LC [247]. Suppose the Spike protein needs to be included in future immunotherapies to clear the virus reservoirs in LC. In that case, it is recommended to use the S1 subunit, which does not elicit IgG4 antibody responses, while still inducing T cell responses that contribute to clearing the virus reservoir.

Because Spike also induced both CD4⁺ and CD8⁺ T cell responses, and since most individuals (70%) have already received at least one dose of Spike protein-based COVID-19 vaccines, it is likely that Spike-specific memory CD4⁺ and CD8⁺ T cells have been developed and often boosted and re-boosted following multiple exposures to various SARS-CoV-2 variants over time [248,249]. Since some Spike protein-vaccinated patients still develop LC, some Spike protein-specific memory CD4⁺ and CD8⁺ T cells may be pathogenic by producing excessive cytokines, rather than protective, as observed in other systems [250–257]. For instance, a subset of Spike protein-specific pathogenic Th₁ and Th₁₇ cells can produce large amounts of inflammatory cytokines, such as IL-1 or IL-17, which can damage tissues and worsen inflammation in LC, thus contributing to the harmful effects of SARS-CoV-2 infection, rather than helping to clear it, as shown in other systems [258–265]. Cytokines, Interferon-gamma (IFN-gamma), IFN-gamma-induced protein 10 (IP-10), tumor necrosis factor (TNF), IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, and IL-17A, induced by SARS-CoV-2 infection, play a crucial role in the pathophysiology and progression to LC-19 [189]. In severe cases of COVID-19, specific T cell subsets, like pathogenic Th₁ cells, can contribute to lung damage and inflammation [104,251]. Thus, while T cells are crucial for fighting off SARS-CoV-2 infections and clearing virus reservoirs [248,249], it is also

Viruses **2025**, 17, 1310

possible that subsets of Spike protein-specific T cells can be detrimental, leading to tissue damage or exacerbating LC symptoms [258,266–287]. Moreover, patients with LC who harbor a persistent virus or vRNA reservoir may continuously produce the Spike protein and other antigens, overstimulating Spike protein-specific T cells that become exhausted and lose their ability to effectively fight the virus and clear the reservoirs. In many chronic and persistent viral infections like HIV or hepatitis, T cells can become exhausted, leading to persistent infection and disease progression. Based on the above assessment of Spike protein B- and T cell response following infection and vaccination, it was suggested not to include Spike protein in any immunotherapy to clear the virus reservoir in LC.

With no approved treatments, the long-term global health and economic impact of chronic LC remains high and growing [23,30,31,288]. Despite these advances, challenges persist in the development and implementation of T cell therapies for LC, including the heterogeneity of symptoms, the absence of standardized diagnostic tests, and the necessity for prolonged clinical trials to assess the efficacy and safety of T cell treatments [29]. Due to a lack of a specific biomarker for LC, industry engagement in developing therapeutics has been limited [29,31,33–36,117].

8. Conclusions

- A potential causative factor of LC, in a large subset of patients, is that reservoirs of virus and/or viral RNA (vRNA) or fragments may persist and replicate in multiple sites of the body, which may drive chronic inflammation and provide continuous viral antigenic stimuli to exhausted CD4⁺ and CD8⁺ T cells [31,33–36]. However, other hypotheses regarding the causative factors of LC include metabolic disturbances, immune dysbiosis, micro-clotting, autonomic dysfunction [38,43,45–47], and the reactivation of other non-SARS-CoV-2 viruses, such as HSV-1, HSV-2, EBV, CMV, and HHV-6, which may be a driver of LC [48,49].
- While a growing body of literature has shown that persistent virus and vRNA reservoirs within cells from various body tissues correlate with some of the LC symptoms, it remains to be confirmed whether the various symptomatology of LC and proinflammatory signatures are a direct consequence of persistent viral antigens.
- Although viral persistence may be linked to inflammation and immunological overactivation in patients with LC, the underlying mechanism of such stimulation remains to be fully elucidated. Nevertheless, SARS-CoV-2-derived vRNA and protein antigens (i.e., Spike protein and Nucleoprotein) appeared to be released in various organs (e.g., gut, brain, heart, and reproductive organs) and in the circulation, possibly inducing inflammation and T cell exhaustion that persists months after the acute COVID-19 infection [23,35,38–42]. This suggests at least one immune evasion mechanism by which the virus may establish its reservoir in LC patients.

9. Future Directions

- Knowledge about chronic LC and its lingering health effects, months and years following acute infection, is still in its embryonic stage. Currently, there are more questions than answers regarding the underlying mechanisms by which the virus and vRNA persistence may lead to the symptomology of LC, as well as how to reverse this outcome.
- Future research should aim to develop reliable animal models that more accurately
 replicate virus reservoirs and the symptoms of LC in humans. As with most diseases,
 no single animal model can fully replicate LC as it occurs in humans; however, studies
 conducted on different species may yield biomarkers and help develop drugs and
 immunotherapies for LC.

Viruses 2025, 17, 1310

 The integration of multi-omics approaches, including genomics, proteomics, and metabolomics, can provide a more comprehensive understanding of symptomologies of LC. Enhanced efforts to model chronic symptoms, combined with the implementation of artificial intelligence, deep learning, organoids, and organ-on-chip models, will further advance the field, enabling more precise and effective therapeutic strategies for LC.

- While growing evidence suggests that persistent virus and viral vRNA detected in patients with LC may produce consistent antigenic stimulation [23,35,38–42], it remains to be determined whether persistent virus and vRNA reservoirs consistently express residual viral antigens in multiple organs and circulation (e.g., Spike protein and Nucleoprotein), and whether this is directly responsible for the chronic inflammation, as well as T cell dysfunction/exhaustion associated with LC symptoms. This will require large LC patient and control groups, as well as reliable animal models of persistent virus and vRNA reservoirs associated with LC-like symptoms, as seen in humans [120].
- The mechanism by which residual Spike protein, S1 subunit, and other SARS-CoV-2 antigens may persist in the plasma and other organs of some patients remains to be explored. While persistent Spike protein has been detected in some patients with LC, the finding should be regarded for now as an association, rather than a cause-and-effect relationship [117]. Whether Spike or any residual SARS-CoV-2 antigen contributes to chronic inflammation and T cell exhaustion that led to LC symptoms requires investigation in large LC patient and control groups, as well as in reliable animal models of LC using multiple pathophysiological and neuro-immunological approaches [120].
- There remains an urgent need to develop drugs or immunotherapeutic strategies that clear persistent virus and vRNA reservoirs. This will likely contribute to curbing the symptoms that target twelve major organ systems, causing dyspnea, vascular damage, cognitive impairments ("brain fog"), physical and mental fatigue, anxiety, and depression in at least a subset of patients with LC. This significant gap in our knowledge will likely require the development of a tissue-targeted immunotherapeutic strategy that increases the frequency and function of antiviral CD4⁺ and CD8⁺ TRM cells within affected tissues, thereby clearing persistent virus reservoirs and alleviating symptoms of LC.
- We are currently investigating the mechanisms by which SARS-CoV-2 causes immune dysfunction and contributes to the progression of LC disease. Information gained from these studies will be crucial to the development of novel immune therapies for treating LC. In a 'humanized" mouse model of LC, we are examining the PD-1, TIM-3, PSGL-1, and/or LAG-3 blockade approach as a potential target for purging the virus reservoirs (Figures 5–7). One goal is to utilize this knowledge to design strategies for enhancing the efficacy of immune therapy in patients with LC.
- Our ultimate and long-term goal is to identify protective T cell antigens and epitopes that are preferentially recognized by CD4⁺ and CD8⁺ T cells from patients who have resolved acute COVID-19 and never developed LC (recovered asymptomatic patients). These protective T cell antigens and epitopes will then be used to design a T cell immunotherapeutic strategy, such as the recently described Prime/Pull/Keep immunotherapy recently developed for other viral pathogens [289,290], to boost strong and long-lasting tissue-resident SARS-CoV-2-specific CD4⁺ and CD8⁺ TRM cells, that will then clear or reduce the persistent virus and vRNA reservoirs, and reverse chronic inflammatory and severe symptoms of LC.

Viruses 2025, 17, 1310 20 of 35

To treat LC patients with T cell immunotherapy, one would first need to select the subset of LC patients who exhibit persistent virus and vRNA reservoirs detected, either directly using ultrasensitive assays to trace virus, or vRNA, or residual viral proteins from, blood, stool, and gut/rectum biopsies or indirectly through virusspecific B and T cell responses, in patients with LC [105,119,125,291–295]. SARS-CoV-2 protein fragments (such as Spike, nucleoprotein, and other viral proteins) are found in the blood of many patients with LC using highly sensitive tests like Simoa (Single Molecule Array) [117,292,293]. Virus vRNA and proteins can also be detected in biopsies of the gut, rectum, tonsils, and tongue [105,111,119,125,291,292,294,295]. Biomarker-guided trials have emerged as a cornerstone of future research efforts and may be a promising approach for personalized medicine in LC [218]. In the future, a combination of biomarkers—blood-borne viral proteins and persistent viral vRNA in stool—is being investigated as a potential diagnostic test to identify LC patients with viral reservoirs [117,296,297]. However, many of these methods are still under clinical development, and no single test has been universally confirmed. Nevertheless, early results are promising for differentiating patients with LC who have underlying viral persistence from those with other causes.

- Treating LC presents a unique set of challenges, including the heterogeneity of symptoms and lack of specific biomarkers and diagnostic tests [29,218]. This variability not only complicates patient selection but also makes it difficult to establish uniform treatment protocols [218]. This heterogeneity may necessitate a more nuanced approach to trial design, incorporating stratified analyses and subgroup-specific interventions to address the diverse patients with LC.
- Since LC is present in various pathophysiology and clinical presentations, patients with LC may respond differently to treatment. While a large subset of patients with LC appear to express persistent reservoirs of virus, vRNA, and/or residual viral proteins, the general utility of T cell-based immunotherapy relies on the proportion of LC patients for whom these reservoirs are the etiology of the disease. However, a T cell immunotherapy that targets T cell antigens selected as being preferentially recognized by the immune system in patients who recovered by clearing acute infections and never progressed to LC (i.e., recovered, or "asymptomatic" patients) may prevent progression to LC. Hence, this strategy may also be effective as a post-exposure prophylaxis treatment for preventing LC.

Author Contributions: Conceptualization—L.B.; Methodology—S.P., S.K., Y.L., D.F.T. and C.J.F.; Software—L.B., Y.L. and S.P.; Validation—S.P., S.K., Y.L. and L.B.; Formal analysis—S.P., S.K. and Y.L.; Investigation—L.B., S.P., S.K., D.F.T. and C.J.F.; Resources—L.B., J.B.U., J.F.Y., G.G., D.G., T.M.J. and R.R.R.; Data curation—L.B., S.P., D.F.T., Y.L. and S.K.; Writing-original draft preparation—L.B.; Writing-review and editing—L.B., J.B.U., S.P., Y.L., J.F.Y., G.G., D.G., T.M.J. and R.R.R.; Visualization—Y.L., S.P. and L.B.; Supervision—L.B.; Project administration—L.B. and S.P.; Funding acquisition—L.B., J.B.U., J.F.Y., G.G., D.G., T.M.J. and R.R.R. All authors have read and agreed to the published version of the manuscript.

Funding: This report was supported by Public Health Service Research grant AI158060 from the National Institutes of Allergy and Infectious Diseases (NIAID) to LBM.

Acknowledgments: The authors would like to thank the UC Irvine Department of Pathology, the Center for Clinical Research (CCR), and the Institute for Clinical and Translational Science (ICTS) for providing the human blood samples and nasopharyngeal swab samples. A special thank you is extended to those from TechImmune, LLC., including Gavin S. Herbert, James H. Cavanaugh, Rick Haugen, Christine Dwight, and Nathan Wheeler, who contributed directly or indirectly to the Long

Viruses 2025, 17, 1310 21 of 35

COVID project. We also wish to thank Steven A. Goldstein, Michael J. Stamos, Suzanne B. Sandmeyer, Jim Mazzo, Janice Briggs, and Marge Brannon.

Conflicts of Interest: LB has an equity interest in TechImmune, LLC., a company that may potentially benefit from the research results and serves on the company's Scientific Advisory Board. LB's relationship with TechImmune, LLC, has been reviewed and approved by the University of California, Irvine, in accordance with its conflict-of-interest policies.

References

- 1. Sala, M.A.; Koralnik, I.J. Five years later: No short answers for Long COVID. Geroscience 2025. [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Global Health; Board on Health Sciences Policy; Committee on Examining the Working Definition for Long COVID; Goldowitz, I.; Worku, T.; Brown, L.; Fineberg, H.V. A Long COVID Definition: A Chronic, Systemic Disease State with Profound Consequences; National Academics Press: Washington, DC, USA, 2024. [CrossRef]
- 3. Gourishankar, A. Geographic disparities and emerging hotspot trends of long COVID in the United States. *Am. J. Med. Sci.* **2025**, 369, 689–694. [CrossRef] [PubMed]
- 4. Hejazian, S.S.; Sadr, A.V.; Shahjouei, S.; Vemuri, A.; Abedi, V.; Zand, R. Prevalence and Determinants of Long-Term Post-COVID Conditions in the United States: 2022 Behavioral Risk Factor Surveillance System. *Am. J. Med.* 2025, 138, 513–523.e10. [CrossRef] [PubMed]
- Kim, D. A nationwide study of risk factors for long COVID and its economic and mental health consequences in the United States. Commun. Med. 2025, 5, 104. [CrossRef]
- 6. Liu-Galvin, R.; Orlando, F.A.; Khan, T.; Wozniak, G.D.; Mainous, A.G., 3rd. Long COVID and Days of Work Missed Due to Illness or Injury by Adults in the United States, 2022. *J. Am. Board Fam. Med.* 2025, 38, 551–555. [CrossRef]
- 7. Hejazian, S.S.; Sadr, A.V.; Shahjouei, S.; Vemuri, A.; Shouhao, Z.; Abedi, V.; Zand, R. Prevalence and determinant of long-term Post-COVID conditions among stroke survivors in the United States. *J. Stroke Cerebrovasc. Dis.* **2024**, *33*, 108007. [CrossRef]
- 8. Hung, C.T.; Hung, Y.C.; Suk, C.W. Prevalence and characteristics in long COVID among adults with asthma in the United States. *J. Asthma* **2024**, *61*, 736–744. [CrossRef]
- 9. Ford, N.D.; Slaughter, D.; Edwards, D.; Dalton, A.; Perrine, C.; Vahratian, A.; Saydah, S. Long COVID and Significant Activity Limitation Among Adults, by Age—United States, June 1–13, 2022, to June 7–19, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 866–870. [CrossRef]
- 10. Vahratian, A.; Adjaye-Gbewonyo, D.; Lin, J.S.; Saydah, S. Long COVID in Children: United States, 2022. NCHS Data Brief 2023, 479, 1–6.
- 11. Adjaye-Gbewonyo, D.; Vahratian, A.; Perrine, C.G.; Bertolli, J. Long COVID in Adults: United States, 2022. NCHS Data Brief 2023, 480, 1–8.
- 12. Zang, C.; Guth, D.; Bruno, A.M.; Xu, Z.; Li, H.; Ammar, N.; Chew, R.; Guthe, N.; Hadley, E.; Kaushal, R.; et al. Long COVID after SARS-CoV-2 during pregnancy in the United States. *Nat. Commun.* **2025**, *16*, 3005. [CrossRef]
- 13. Blanchflower, D.G.; Bryson, A. Long COVID in the United States. PLoS ONE 2023, 18, e0292672. [CrossRef]
- 14. Buonsenso, D.; Munblit, D.; De Rose, C.; Sinatti, D.; Ricchiuto, A.; Carfi, A.; Valentini, P. Preliminary evidence on long COVID in children. *Acta Paediatr.* 2021, 110, 2208–2211. [CrossRef] [PubMed]
- 15. Noval Rivas, M.; Porritt, R.A.; Cheng, M.H.; Bahar, I.; Arditi, M. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. *Front. Immunol.* **2022**, *13*, 941009. [CrossRef] [PubMed]
- 16. Burns, M.D.; Bartsch, Y.C.; Davis, J.P.; Boribong, B.P.; Loiselle, M.; Kang, J.; Kane, A.S.; Edlow, A.G.; Fasano, A.; Alter, G.; et al. Long-term humoral signatures following acute pediatric COVID-19 and Multisystem Inflammatory Syndrome in Children. *Pediatr. Res.* 2023, 94, 1327–1334. [CrossRef] [PubMed]
- 17. Chakraborty, A.; Johnson, J.N.; Spagnoli, J.; Amin, N.; McCoy, M.; Swaminathan, N.; Yohannan, T.; Philip, R. Long-Term Cardiovascular Outcomes of Multisystem Inflammatory Syndrome in Children Associated with COVID-19 Using an Institution Based Algorithm. *Pediatr. Cardiol.* 2023, 44, 367–380. [CrossRef]
- 18. Constantin, T.; Pek, T.; Horvath, Z.; Garan, D.; Szabo, A.J. Multisystem inflammatory syndrome in children (MIS-C): Implications for long COVID. *Inflammopharmacology* **2023**, *31*, 2221–2236. [CrossRef]
- 19. Gupte, A.; Sriram, S.; Gunasekaran, V.; Chaudhari, K.; Kamat, D. The Triad of COVID-19 in Children: Acute COVID-19, Multisystem Inflammatory Syndrome, and Long COVID-Part I. *Pediatr. Ann.* **2024**, *53*, e473–e477. [CrossRef]
- Ptak, K.; Olszewska, M.; Szymonska, I.; Olchawa-Czech, A.; Mol, N.; Rudek-Budzynska, A.; Kukla, K.; Cisowska, M.; Sabat, O.; Grzyb, A.; et al. Should we be afraid of long-term cardiac consequences in children with multisystem inflammatory syndrome? Experience from subsequent waves of COVID-19. Eur. J. Pediatr. 2024, 183, 2683–2692. [CrossRef]

Viruses 2025, 17, 1310 22 of 35

21. Gupte, A.; Sriram, S.; Gunasekaran, V.; Chaudhari, K.; Kamat, D. The Triad of COVID-19 in Children: Acute COVID-19, Multisystem Inflammatory Syndrome, and Long COVID-Part II. *Pediatr. Ann.* **2025**, *54*, e40–e44. [CrossRef]

- 22. Singla, R.; Sankar, J.; Tayal, A.; Bhadani, H.; Bagri, N.K.; Kabra, S.; Lodha, R. Long-Term Outcomes of Survivors of COVID-19 with Moderate to Severe Infection and Children with Multisystem Inflammatory Syndrome or MIS-C. *Indian J. Pediatr.* **2025**, 92, 178–180. [CrossRef] [PubMed]
- 23. Proal, A.D.; VanElzakker, M.B.; Aleman, S.; Bach, K.; Boribong, B.P.; Buggert, M.; Cherry, S.; Chertow, D.S.; Davies, H.E.; Dupont, C.L.; et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). *Nat. Immunol.* **2023**, 24, 1616–1627. [CrossRef]
- 24. Al-Aly, Z.; Davis, H.; McCorkell, L.; Soares, L.; Wulf-Hanson, S.; Iwasaki, A.; Topol, E.J. Long COVID science, research and policy. *Nat. Med.* **2024**, *30*, 2148–2164. [CrossRef]
- 25. Hou, Y.; Gu, T.; Ni, Z.; Shi, X.; Ranney, M.L.; Mukherjee, B. Global Prevalence of Long COVID, its Subtypes and Risk factors: An Updated Systematic Review and Meta-Analysis. *medRxiv* 2025. [CrossRef]
- 26. Gross, R.S.; Thaweethai, T.; Salisbury, A.L.; Kleinman, L.C.; Mohandas, S.; Rhee, K.E.; Snowden, J.N.; Tantisira, K.G.; Warburton, D.; Wood, J.C.; et al. Characterizing Long COVID Symptoms During Early Childhood. *JAMA Pediatr.* 2025, 179, 781–792. [CrossRef]
- 27. Gross, R.S.; Carmilani, M.; Stockwell, M.S. Long COVID in Young Children, School-Aged Children, and Teens. *JAMA Pediatr.* **2025**, *179*, 809. [CrossRef]
- 28. Ford, N.D.; Vahratian, A.; Pratt, C.Q.; Yousaf, A.R.; Gregory, C.O.; Saydah, S. Long COVID Prevalence and Associated Activity Limitation in US Children. *JAMA Pediatr.* **2025**, *179*, 471–473. [CrossRef]
- 29. Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. *Nat. Rev. Microbiol.* **2023**, 21, 133–146. [CrossRef] [PubMed]
- 30. Park, S.O.; Nanda, N. Long COVID: A Systematic Review of Preventive Strategies. Infect. Dis. Rep. 2025, 17, 56. [CrossRef]
- 31. Proal, A.D.; Aleman, S.; Bomsel, M.; Brodin, P.; Buggert, M.; Cherry, S.; Chertow, D.S.; Davies, H.E.; Dupont, C.L.; Deeks, S.G.; et al. Targeting the SARS-CoV-2 reservoir in long COVID. *Lancet Infect. Dis.* **2025**, 25, e294–e306. [CrossRef] [PubMed]
- 32. Buonsenso, D.; Piazza, M.; Boner, A.L.; Bellanti, J.A. Long COVID: A proposed hypothesis-driven model of viral persistence for the pathophysiology of the syndrome. *Allergy Asthma Proc.* **2022**, *43*, 187–193. [CrossRef]
- 33. Roe, K. A role for T-cell exhaustion in Long COVID-19 and severe outcomes for several categories of COVID-19 patients. *J. Neurosci. Res.* **2021**, *99*, 2367–2376. [CrossRef]
- 34. Eaton-Fitch, N.; Rudd, P.; Er, T.; Hool, L.; Herrero, L.; Marshall-Gradisnik, S. Immune exhaustion in ME/CFS and long COVID. *JCI Insight* **2024**, *9*, e183810. [CrossRef] [PubMed]
- 35. Phetsouphanh, C.; Jacka, B.; Ballouz, S.; Jackson, K.J.L.; Wilson, D.B.; Manandhar, B.; Klemm, V.; Tan, H.X.; Wheatley, A.; Aggarwal, A.; et al. Improvement of immune dysregulation in individuals with long COVID at 24-months following SARS-CoV-2 infection. *Nat. Commun.* **2024**, *15*, 3315. [CrossRef]
- 36. Lupi, L.; Vitiello, A.; Parolin, C.; Calistri, A.; Garzino-Demo, A. The Potential Role of Viral Persistence in the Post-Acute Sequelae of SARS-CoV-2 Infection (PASC). *Pathogens* **2024**, *13*, 388. [CrossRef] [PubMed]
- 37. Cavarelli, M. Ghosts of the virus: Unmasking the persistent threat of SARS-CoV-2 in Long COVID. Virologie 2025, 29, 57–68.
- 38. Coulon, P.G.; Prakash, S.; Dhanushkodi, N.R.; Srivastava, R.; Zayou, L.; Tifrea, D.F.; Edwards, R.A.; Figueroa, C.J.; Schubl, S.D.; Hsieh, L.; et al. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4(+) and CD8(+) memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. *Front. Immunol.* 2024, *15*, 1343716. [CrossRef]
- 39. da Silva Antunes, R.; Fajardo-Rosas, V.; Yu, E.D.; Galvez, R.I.; Abawi, A.; Escarrega, E.A.; Martinez-Perez, A.; Johansson, E.; Goodwin, B.; Frazier, A.; et al. Evolution of SARS-CoV-2 T cell responses as a function of multiple COVID-19 boosters. *Cell Rep.* **2025**, 44, 115907. [CrossRef]
- 40. Ahsan, F.; Rahmawati, N.Y.; Dachlan, E.G.; Alditia, F.N.; Santoso, B. Memory T cell reactivity to a broad range of conserved SARS-CoV-2-derived ORF1ab epitopes in first wave COVID-19 convalescents. *Vaccine* **2025**, *62*, 127571. [CrossRef] [PubMed]
- 41. Asaba, C.N.; Bitazar, R.; Labonte, P.; Bukong, T.N. Bronchoalveolar lavage single-cell transcriptomics reveals immune dysregulations driving COVID-19 severity. *PLoS ONE* **2025**, *20*, e0309880. [CrossRef]
- 42. Long, Q.; Song, S.; Xue, J.; Yu, W.; Zheng, Y.; Li, J.; Wu, J.; Hu, X.; Jiang, M.; Ye, H.; et al. The CD38(+)HLA-DR(+) T cells with activation and exhaustion characteristics as predictors of severity and mortality in COVID-19 patients. *Front. Immunol.* 2025, 16, 1577803. [CrossRef] [PubMed]
- Appelman, B.; Charlton, B.T.; Goulding, R.P.; Kerkhoff, T.J.; Breedveld, E.A.; Noort, W.; Offringa, C.; Bloemers, F.W.; van Weeghel, M.; Schomakers, B.V.; et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. *Nat. Commun.* 2024, 15, 17.
 [CrossRef] [PubMed]
- 44. McMillan, P.; Turner, A.J.; Uhal, B.D. Mechanisms of Gut-Related Viral Persistence in Long COVID. *Viruses* **2024**, *16*, 1266. [CrossRef]

Viruses 2025, 17, 1310 23 of 35

45. Prakash, S.; Ulmer, B.J.; BenMohamed, L. Long COVID-19: A Comprehensive Review of Pathophysiology, Organ-Specific Manifestations, Animal Models, and Therapeutic Advances. *bioRxiv* **2025**.

- 46. Livieratos, A.; Gogos, C.; Akinosoglou, K. Beyond Antivirals: Alternative Therapies for Long COVID. *Viruses* **2024**, *16*, 1795. [CrossRef]
- 47. Lindeboom, R.G.H.; Worlock, K.B.; Dratva, L.M.; Yoshida, M.; Scobie, D.; Wagstaffe, H.R.; Richardson, L.; Wilbrey-Clark, A.; Barnes, J.L.; Kretschmer, L.; et al. Human SARS-CoV-2 challenge uncovers local and systemic response dynamics. *Nature* 2024, 631, 189–198. [CrossRef]
- 48. He, X.; Zhang, X.; Zhong, W. Emerging small-molecule antiviral agents in long COVID prevention. *Front. Pharmacol.* **2024**, *15*, 1457672. [CrossRef]
- 49. Kanwal, A.; Zhang, Z. Exploring common pathogenic association between Epstein Barr virus infection and long-COVID by integrating RNA-Seq and molecular dynamics simulations. *Front. Immunol.* **2024**, *15*, 1435170. [CrossRef]
- 50. de Melo, G.D.; Lazarini, F.; Levallois, S.; Hautefort, C.; Michel, V.; Larrous, F.; Verillaud, B.; Aparicio, C.; Wagner, S.; Gheusi, G.; et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. *Sci. Transl. Med.* **2021**, *13*, eabf8396. [CrossRef]
- 51. Zuo, W.; He, D.; Liang, C.; Du, S.; Hua, Z.; Nie, Q.; Zhou, X.; Yang, M.; Tan, H.; Xu, J.; et al. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: A cross-sectional cohort study in China. *Lancet Infect. Dis.* **2024**, 24, 845–855. [CrossRef] [PubMed]
- 52. Griffin, D.O. Postacute Sequelae of COVID (PASC or Long COVID): An Evidenced-Based Approach. *Open Forum Infect. Dis.* **2024**, 11, ofae462. [CrossRef]
- 53. Sitbon, A.; Hauw-Berlemont, C.; Mebarki, M.; Heming, N.; Mayaux, J.; Diehl, J.L.; Demoule, A.; Annane, D.; Marois, C.; Demeret, S.; et al. Treatment of COVID-19-associated ARDS with umbilical cord-derived mesenchymal stromal cells in the STROMA-CoV-2 multicenter randomized double-blind trial: Long-term safety, respiratory function, and quality of life. *Stem Cell Res. Ther.* **2024**, 15, 109. [CrossRef]
- 54. Wagenlechner, C.; Wendt, R.; Reichardt, B.; Mildner, M.; Mascherbauer, J.; Aigner, C.; Auer, J.; Ankersmit, H.J.; Graf, A.C. Short and long-term outcomes of children and adolescents hospitalized with COVID-19 or influenza: Results of the AUTCOV study. *Sci. Rep.* 2025, 15, 22692. [CrossRef] [PubMed]
- 55. Gusmao, A.C.S.; Scalea, A.C.R.; Uehara, S. Symptoms of long COVID in children and adolescents: A scoping review. *Rev. Esc. Enferm. USP* **2025**, *59*, e20240435. [CrossRef]
- 56. Szabo, P.A.; Dogra, P.; Gray, J.I.; Wells, S.B.; Connors, T.J.; Weisberg, S.P.; Krupska, I.; Matsumoto, R.; Poon, M.M.L.; Idzikowski, E.; et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. *Immunity* 2021, 54, 797–814 e6. [CrossRef]
- 57. Strahm, C.; Kahlert, C.R.; Gusewell, S.; Vuichard-Gysin, D.; Stocker, R.; Kuster, S.P.; Kohler, P. Evolution of symptoms compatible with post-acute sequelae of SARS-CoV-2 (PASC) after Wild-type and/or Omicron BA.1 infection: A prospective healthcare worker cohort. *J. Infect.* 2024, 88, 200–202. [CrossRef] [PubMed]
- 58. Hoshijima, H.; Mihara, T.; Seki, H.; Hyuga, S.; Kuratani, N.; Shiga, T. Incidence of long-term post-acute sequelae of SARS-CoV-2 infection related to pain and other symptoms: A systematic review and meta-analysis. *PLoS ONE* **2023**, *18*, e0250909. [CrossRef] [PubMed]
- 59. Hope, A.A.; Evering, T.H. Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. *Infect. Dis. Clin. N. Am.* **2022**, *36*, 379–395. [CrossRef]
- 60. Patel, S.K.; Torous, J. Exploring the Neuropsychiatric Sequalae of Perceived COVID-19 Exposure in College Students: A Pilot Digital Phenotyping Study. Front. Psychiatry 2021, 12, 788926. [CrossRef]
- 61. Sacks-Zimmerman, A.; Bergquist, T.F.; Farr, E.M.; Cornwell, M.A.; Kanellopoulos, D. Rehabilitation of Neuropsychiatric Symptoms in Patients with Long-COVID: Position Statement. *Arch. Phys. Med. Rehabil.* **2022**, *104*, 350–354. [CrossRef]
- 62. Hugon, J.; Msika, E.F.; Queneau, M.; Farid, K.; Paquet, C. Long COVID: Cognitive complaints (brain fog) and dysfunction of the cingulate cortex. *J. Neurol.* **2022**, 269, 44–46. [CrossRef] [PubMed]
- 63. Michelutti, M.; Furlanis, G.; Buoite Stella, A.; Bellavita, G.; Frezza, N.; Torresin, G.; Ajcevic, M.; Manganotti, P. Sex-dependent characteristics of Neuro-Long-COVID: Data from a dedicated neurology ambulatory service. *J. Neurol. Sci.* **2022**, 441, 120355. [CrossRef] [PubMed]
- 64. Ozonoff, A.; Schaenman, J.; Jayavelu, N.D.; Milliren, C.E.; Calfee, C.S.; Cairns, C.B.; Kraft, M.; Baden, L.R.; Shaw, A.C.; Krammer, F.; et al. Phenotypes of disease severity in a cohort of hospitalized COVID-19 patients: Results from the IMPACC study. *EBioMedicine* **2022**, *83*, 104208. [CrossRef]
- 65. Bungenberg, J.; Humkamp, K.; Hohenfeld, C.; Rust, M.I.; Ermis, U.; Dreher, M.; Hartmann, N.K.; Marx, G.; Binkofski, F.; Finke, C.; et al. Long COVID-19: Objectifying most self-reported neurological symptoms. *Ann. Clin. Transl. Neurol.* **2022**, *9*, 141–154. [CrossRef]

Viruses 2025, 17, 1310 24 of 35

66. Lopez-Leon, S.; Wegman-Ostrosky, T.; Ayuzo Del Valle, N.C.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. Long-COVID in children and adolescents: A systematic review and meta-analyses. *Sci. Rep.* **2022**, *12*, 9950. [CrossRef]

- 67. Milan, A.; Salles, P.; Pelayo, C.; Uribe-San-Martin, R. Acute to Chronic Electro-Clinical Manifestations of Neuro-COVID and the Long-Haul Consequences in People With Epilepsy: A Review. *Cureus* **2022**, *14*, e26020. [CrossRef]
- 68. Beghi, E.; Helbok, R.; Ozturk, S.; Karadas, O.; Lisnic, V.; Grosu, O.; Kovacs, T.; Dobronyi, L.; Bereczki, D.; Cotelli, M.S.; et al. Short- and long-term outcome and predictors in an international cohort of patients with neuro-COVID-19. *Eur. J. Neurol.* **2022**, 29, 1663–1684. [CrossRef]
- 69. Pinzon, R.T.; Wijaya, V.O.; Jody, A.A.; Nunsio, P.N.; Buana, R.B. Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis. *J. Infect. Public Health* **2022**, *15*, 856–869. [CrossRef]
- 70. Kimmig, L.M.; Rako, Z.A.; Ziegler, S.; Richter, M.J.; GS, A.T.; Roller, F.; Grimminger, F.; Vadasz, I.; Seeger, W.; Herold, S.; et al. Long-term comprehensive cardiopulmonary phenotyping of COVID-19. *Respir. Res.* **2022**, 23, 263. [CrossRef] [PubMed]
- 71. Guo, P.; Benito Ballesteros, A.; Yeung, S.P.; Liu, R.; Saha, A.; Curtis, L.; Kaser, M.; Haggard, M.P.; Cheke, L.G. COVCOG 1: Factors Predicting Physical, Neurological and Cognitive Symptoms in Long COVID in a Community Sample. A First Publication From the COVID and Cognition Study. *Front. Aging Neurosci.* **2022**, *14*, 804922. [CrossRef]
- 72. Stincarelli, M.A.; Abbate, I.; Matusali, G.; Tanturli, M.; Camici, M.; Arvia, R.; Lazzari, E.; Cimini, E.; Vergori, A.; Maggi, F.; et al. Reduced Presence of SARS-CoV-2 microRNA-like Small RNA in the Serum of Patients with Post-Acute Sequelae SARS-CoV-2 Infection. *Microorganisms* 2025, 13, 126. [CrossRef]
- 73. Niemczak, C.E.; Ford, J.C.; Roth, R.M.; Leigh, S.M.; Parsonnet, J.; Martin, C.; Soule, S.O.; Haron, T.M.; Buckey, J.C., Jr.; Wylie, G.R. Neuroimaging markers of cognitive fatigue in individuals with post-acute sequelae of SARS-CoV-2 infection. *Brain Cogn.* 2025, 183, 106254. [CrossRef] [PubMed]
- 74. Ng, T.K.S.; Beydoun, H.A.; Von Ah, D.; Shadyab, A.H.; Wong, S.C.; Freiberg, M.; Ikramuddin, F.; Nguyen, P.K.; Gradidge, P.J.; Qi, L.; et al. Pre-pandemic leukocyte count is associated with severity of post-acute sequelae of SARS-CoV-2 infection among older women in the Women's Health Initiative. *Menopause* 2025, 32, 197–206. [CrossRef]
- 75. Babalola, T.K.; Clouston, S.A.P.; Sekendiz, Z.; Chowdhury, D.; Soriolo, N.; Kawuki, J.; Meliker, J.; Carr, M.; Valenti, B.R.; Fontana, A.; et al. SARS-COV-2 re-infection and incidence of post-acute sequelae of COVID-19 (PASC) among essential workers in New York: A retrospective cohort study. Lancet Reg. Health Am. 2025, 42, 100984. [CrossRef]
- 76. Maart, S.; Hofmeyr, R.A.; Muller, J.J.; Tserere, L.B. A cross-sectional study on the long-term impact of COVID-19: Symptoms, disability and daily functioning. *Health SA* **2025**, *30*, 2880. [CrossRef]
- 77. do Amaral, C.; da Luz Goulart, C.; da Silva, B.M.; Valente, J.; Rezende, A.G.; Fernandes, E.; Cubas-Vega, N.; Borba, M.G.S.; Sampaio, V.; Monteiro, W.; et al. Low handgrip strength is associated with worse functional outcomes in long COVID. *Sci. Rep.* **2024**, *14*, 2049. [CrossRef]
- 78. Gheorghita, R.; Soldanescu, I.; Lobiuc, A.; Caliman Sturdza, O.A.; Filip, R.; Constantinescu-Bercu, A.; Dimian, M.; Mangul, S.; Covasa, M. The knowns and unknowns of long COVID-19: From mechanisms to therapeutical approaches. *Front. Immunol.* **2024**, 15, 1344086. [CrossRef]
- 79. Pires, L.; Marreiros, A.; Saraiva, C.; Reis, C.; Neves, D.; Guerreiro, C.; Tome, J.B.; Luz, M.I.; Pereira, M.I.; Barroso, A.S.; et al. Association of acute COVID-19 severity and long COVID fatigue and quality of life: Prospective cohort multicenter observational study. *Medicine* 2025, 104, e42891. [CrossRef] [PubMed]
- 80. Ivkovic, V.; Anandh, U.; Bell, S.; Kronbichler, A.; Soler, M.J.; Bruchfeld, A. Long COVID and the kidney. *Nat. Rev. Nephrol.* **2025**. [CrossRef]
- 81. Reiss, A.B.; Greene, C.; Dayaramani, C.; Rauchman, S.H.; Stecker, M.M.; De Leon, J.; Pinkhasov, A. Long COVID, the Brain, Nerves, and Cognitive Function. *Neurol. Int.* **2023**, *15*, 821–841. [CrossRef] [PubMed]
- 82. Cornwell, W.K., 3rd; Levine, B.D.; Baptiste, D.; Bhave, N.; Desai, S.; Dineen, E.; Durstenfeld, M.; Edward, J.; Huang, M.; Jacobsen, R.; et al. Exercise Intolerance and Response to Training in Patients With Postacute Sequelae of SARS-CoV2 (Long COVID): A Scientific Statement From the American Heart Association. *Circulation* 2025, 152, e50–e62. [CrossRef] [PubMed]
- 83. Khakshooy, A.; Chiappelli, F. Post-acute CoVid-19 syndrome (PACS) linked cardiovascular symptoms. *Bioinformation* **2024**, 20, 412–414. [CrossRef] [PubMed]
- 84. Soril, L.J.J.; Damant, R.W.; Lam, G.Y.; Smith, M.P.; Weatherald, J.; Bourbeau, J.; Hernandez, P.; Stickland, M.K. The effectiveness of pulmonary rehabilitation for Post-COVID symptoms: A rapid review of the literature. *Respir. Med.* 2022, 195, 106782. [CrossRef]
- 85. Sorets, T.R.; Finley, J.A.; LaFrance, W.C., Jr.; Patten, R.V.; Mordecai, K.; Jimenez, M.; Suchy, S.; Cahan, J.; Koralnik, I.J.; Cherney, L.R.; et al. Beyond mood screening: A pilot study of emotional, cognitive, and somatic concerns in patients with Long COVID. *Front. Psychol.* **2025**, *16*, 1517299. [CrossRef]
- 86. Pietzner, M.; Denaxas, S.; Yasmeen, S.; Ulmer, M.A.; Nakanishi, T.; Arnold, M.; Kastenmuller, G.; Hemingway, H.; Langenberg, C. Complex patterns of multimorbidity associated with severe COVID-19 and long COVID. *Commun. Med.* **2024**, *4*, 94. [CrossRef]

Viruses **2025**, 17, 1310 25 of 35

87. Klein, J.; Wood, J.; Jaycox, J.R.; Dhodapkar, R.M.; Lu, P.; Gehlhausen, J.R.; Tabachnikova, A.; Greene, K.; Tabacof, L.; Malik, A.A.; et al. Distinguishing features of long COVID identified through immune profiling. *Nature* 2023, 623, 139–148. [CrossRef] [PubMed]

- 88. Silva, J.; Takahashi, T.; Wood, J.; Lu, P.; Tabachnikova, A.; Gehlhausen, J.R.; Greene, K.; Bhattacharjee, B.; Monteiro, V.S.; Lucas, C.; et al. Sex differences in symptomatology and immune profiles of Long COVID. *medRxiv* **2024**. [CrossRef]
- 89. Schafer, A.; Leist, S.R.; Powers, J.M.; Baric, R.S. Animal models of Long Covid: A hit-and-run disease. *Sci. Transl. Med.* **2024**, 16, eado2104. [CrossRef]
- 90. Low, R.N.; Low, R.J.; Akrami, A. A review of cytokine-based pathophysiology of Long COVID symptoms. *Front. Med.* **2023**, 10, 1011936. [CrossRef]
- 91. Ganesh, R.; Yadav, S.; Hurt, R.T.; Mueller, M.R.; Aakre, C.A.; Gilman, E.A.; Grach, S.L.; Overgaard, J.; Snyder, M.R.; Collins, N.M.; et al. Pro Inflammatory Cytokines Profiles of Patients With Long COVID Differ Between Variant Epochs. *J. Prim. Care Community Health* **2024**, *15*, 21501319241254751. [CrossRef]
- 92. Antonopoulou, S.; Petsini, F.; Detopoulou, M.; Theoharides, T.C.; Demopoulos, C.A. Is there an interplay between the SARS-CoV-2 spike protein and Platelet-Activating factor? *BioFactors* **2022**, *48*, 1271–1283. [CrossRef] [PubMed]
- 93. Theoharides, T.C. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? *Mol. Neurobiol.* **2022**, *59*, 1850–1861. [CrossRef]
- 94. Theoharides, T.C.; Kempuraj, D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. *Cells* **2023**, *12*, 688. [CrossRef]
- 95. Tsilioni, I.; Theoharides, T.C. Recombinant SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Stimulate Release of Different Pro-Inflammatory Mediators via Activation of Distinct Receptors on Human Microglia Cells. *Mol. Neurobiol.* **2023**, *60*, 6704–6714. [CrossRef]
- 96. Tsilioni, I.; Theoharides, T.C. Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of Chymase, Tryptase, and IL-1beta from Human Mast Cells, Augmented by IL-33. *Int. J. Mol. Sci.* **2023**, 24, 9487. [CrossRef]
- 97. Kempuraj, D.; Tsilioni, I.; Aenlle, K.K.; Klimas, N.G.; Theoharides, T.C. Long COVID elevated MMP-9 and release from microglia by SARS-CoV-2 Spike protein. *Transl. Neurosci.* **2024**, *15*, 20220352. [CrossRef]
- 98. Mandel, H.; Yoo, Y.J.; Allen, A.J.; Abedian, S.; Verzani, Z.; Karlson, E.W.; Kleinman, L.C.; Mudumbi, P.C.; Oliveira, C.R.; Muszynski, J.A.; et al. Long COVID Incidence Proportion in Adults and Children Between 2020 and 2024: An Electronic Health Record-Based Study From the RECOVER Initiative. *Clin. Infect. Dis.* 2025, 80, 1247–1261. [CrossRef]
- 99. Esposito, S.; Puntoni, M.; Deolmi, M.; Ramundo, G.; Maglietta, G.; Poeta, M.; Zampogna, S.; Colomba, C.; Suppiej, A.; Cardinale, F.; et al. Long COVID in pediatric age: An observational, prospective, longitudinal, multicenter study in Italy. *Front. Immunol.* **2025**, *16*, 1466201. [CrossRef] [PubMed]
- 100. Rong, Z.; Mai, H.; Ebert, G.; Kapoor, S.; Puelles, V.G.; Czogalla, J.; Hu, S.; Su, J.; Prtvar, D.; Singh, I.; et al. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. *Cell Host Microbe* **2024**, 32, 2112–2130.e10. [CrossRef] [PubMed]
- 101. Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. *Nature* **2022**, *612*, 758–763. [CrossRef]
- 102. Peluso, M.J.; Ryder, D.; Flavell, R.R.; Wang, Y.; Levi, J.; LaFranchi, B.H.; Deveau, T.M.; Buck, A.M.; Munter, S.E.; Asare, K.A.; et al. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. *Sci. Transl. Med.* 2024, 16, eadk3295. [CrossRef]
- 103. Rendeiro, A.F.; Ravichandran, H.; Kim, J.; Borczuk, A.C.; Elemento, O.; Schwartz, R.E. Persistent alveolar type 2 dysfunction and lung structural derangement in post-acute COVID-19. *medRxiv* 2022. [CrossRef] [PubMed]
- 104. Sariol, A.; Perlman, S. Lung inflammation drives Long Covid. Science 2025, 387, 1039–1040. [CrossRef]
- 105. Goh, D.; Lim, J.C.T.; Fernaindez, S.B.; Joseph, C.R.; Edwards, S.G.; Neo, Z.W.; Lee, J.N.; Caballero, S.G.; Lau, M.C.; Yeong, J.P.S. Case report: Persistence of residual antigen and RNA of the SARS-CoV-2 virus in tissues of two patients with long COVID. *Front. Immunol.* 2022, *13*, 939989.
- 106. Visvabharathy, L.; Orban, Z.S.; Koralnik, I.J. Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence. *Front. Med.* **2022**, *9*, 1003103. [CrossRef]
- 107. Zollner, A.; Koch, R.; Jukic, A.; Pfister, A.; Meyer, M.; Rossler, A.; Kimpel, J.; Adolph, T.E.; Tilg, H. Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory Bowel Diseases. *Gastroenterology* **2022**, *163*, 495–506.e8. [CrossRef]
- 108. Zollner, A.; Koch, R.; Jukic, A.; Pfister, A.; Meyer, M.; Wick, N.; Wick, G.; Rossler, A.; Kimpel, J.; Adolph, T.E.; et al. Clearance of Gut Mucosal SARS-CoV-2 Antigens and Postacute COVID-19 After 2 Years in Patients With Inflammatory Bowel Disease. *Gastroenterology* 2024, 167, 604–607.e8. [CrossRef] [PubMed]
- 109. Lima, T.M.; Martins, R.B.; Miura, C.S.; Souza, M.V.O.; Cassiano, M.H.A.; Rodrigues, T.S.; Veras, F.P.; Sousa, J.F.; Gomes, R.; Almeida, G.M.; et al. Tonsils are major sites of persistence of SARS-CoV-2 in children. *Microbiol. Spectr.* **2023**, *11*, e0134723. [CrossRef]

Viruses 2025, 17, 1310 26 of 35

110. Schwartz, J.; Capistrano, K.; Hussein, H.; Hafedi, A.; Shukla, D.; Naqvi, A. Oral SARS-CoV-2 Infection and Risk for Long Covid. *Rev. Med. Virol.* 2025, 35, e70029. [CrossRef] [PubMed]

- 111. Tsuchiya, H. The Oral Cavity Potentially Serving as a Reservoir for SARS-CoV-2 but Not Necessarily Facilitating the Spread of COVID-19 in Dental Practice. *Eur. J. Dent.* **2023**, *17*, 310–318. [CrossRef]
- 112. Yao, Q.; Doyle, M.E.; Liu, Q.R.; Appleton, A.; O'Connell, J.F.; Weng, N.P.; Egan, J.M. Long-Term Dysfunction of Taste Papillae in SARS-CoV-2. *NEJM Evid.* **2023**, *2*, EVIDoa2300046. [CrossRef] [PubMed]
- 113. Hallak, J.; Caldini, E.G.; Teixeira, T.A.; Correa, M.C.M.; Duarte-Neto, A.N.; Zambrano, F.; Taubert, A.; Hermosilla, C.; Drevet, J.R.; Dolhnikoff, M.; et al. Transmission electron microscopy reveals the presence of SARS-CoV-2 in human spermatozoa associated with an ETosis-like response. *Andrology* **2024**, *12*, 1799–1807.
- 114. Dai, P.; Qiao, F.; Chen, Y.; Chan, D.Y.L.; Yim, H.C.H.; Fok, K.L.; Chen, H. SARS-CoV-2 and male infertility: From short-to long-term impacts. *J. Endocrinol. Investig.* **2023**, *46*, 1491–1507. [CrossRef]
- 115. Lu, S.; Peluso, M.J.; Glidden, D.V.; Davidson, M.C.; Lugtu, K.; Pineda-Ramirez, J.; Tassetto, M.; Garcia-Knight, M.; Zhang, A.; Goldberg, S.A.; et al. Early biological markers of post-acute sequelae of SARS-CoV-2 infection. *Nat. Commun.* **2024**, *15*, 7466. [CrossRef]
- 116. Yin, K.; Peluso, M.J.; Luo, X.; Thomas, R.; Shin, M.G.; Neidleman, J.; Andrew, A.; Young, K.C.; Ma, T.; Hoh, R.; et al. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. *Nat. Immunol.* 2024, 25, 218–225. [CrossRef]
- 117. Peluso, M.J.; Swank, Z.N.; Goldberg, S.A.; Lu, S.; Dalhuisen, T.; Borberg, E.; Senussi, Y.; Luna, M.A.; Chang Song, C.; Clark, A.; et al. Plasma-based antigen persistence in the post-acute phase of COVID-19. *Lancet Infect. Dis.* **2024**, 24, e345–e347. [CrossRef] [PubMed]
- 118. Centers for Disease Control and Prevention. Media Statement from CDC Director Rochelle P. Walensky, MD, MPH, on Signing the Advisory Committee on Immunization Practices' Recommendation to Use Janssen's COVID-19 Vaccine in People 18 and Older [Press Release]. 2021. Available online: https://archive.cdc.gov/www_cdc_gov/media/releases/2021/s0228-JJ-vaccine.html (accessed on 23 September 2025).
- 119. Cruz, T.; Albacar, N.; Ruiz, E.; Lledo, G.M.; Perea, L.; Puebla, A.; Torvisco, A.; Mendoza, N.; Marrades, P.; Sellares, J.; et al. Persistence of dysfunctional immune response 12 months after SARS-CoV-2 infection and their relationship with pulmonary sequelae and long COVID. *Respir. Res.* 2025, 26, 152. [CrossRef]
- 120. Heydemann, L.; Ciurkiewicz, M.; Stork, T.; Zdora, I.; Hulskotter, K.; Gregor, K.M.; Michaely, L.M.; Reineking, W.; Schreiner, T.; Beythien, G.; et al. Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis. *Nat. Commun.* 2025, 16, 2080. [CrossRef]
- 121. Cheung, C.C.L.; Goh, D.; Lim, X.; Tien, T.Z.; Lim, J.C.T.; Lee, J.N.; Tan, B.; Tay, Z.E.A.; Wan, W.Y.; Chen, E.X.; et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. *Gut* 2022, 71, 226–229. [CrossRef]
- 122. Roden, A.C.; Boland, J.M.; Johnson, T.F.; Aubry, M.C.; Lo, Y.C.; Butt, Y.M.; Maleszewski, J.J.; Larsen, B.T.; Tazelaar, H.D.; Khoor, A.; et al. Late Complications of COVID-19. *Arch. Pathol. Lab. Med.* **2022**, 146, 791–804. [CrossRef] [PubMed]
- 123. Natarajan, A.; Zlitni, S.; Brooks, E.F.; Vance, S.E.; Dahlen, A.; Hedlin, H.; Park, R.M.; Han, A.; Schmidtke, D.T.; Verma, R.; et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. *Med* 2022, 3, 371–387.e9. [CrossRef] [PubMed]
- 124. Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of antibody immunity to SARS-CoV-2. *Nature* **2021**, *591*, 639–644. [CrossRef]
- 125. Yonker, L.M.; Kane, A.S.; Swank, Z.; Papadakis, L.; Kenyon, V.; Han, S.; Lima, R.; Guthrie, L.B.; Alvarez-Carcamo, B.; Lahoud-Rahme, M.; et al. Viral spike antigen clearance and augmented recovery in children with post-COVID multisystem inflammatory syndrome treated with larazotide. *Sci. Transl. Med.* 2025, 17, eadu4284. [CrossRef]
- 126. Xu, Q.; Milanez-Almeida, P.; Martins, A.J.; Radtke, A.J.; Hoehn, K.B.; Oguz, C.; Chen, J.; Liu, C.; Tang, J.; Grubbs, G.; et al. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. *Nat. Immunol.* 2023, 24, 186–199. [CrossRef]
- 127. Tan, H.X.; Wragg, K.M.; Kelly, H.G.; Esterbauer, R.; Dixon, B.J.; Lau, J.S.Y.; Flanagan, K.L.; van de Sandt, C.E.; Kedzierska, K.; McMahon, J.H.; et al. Cutting Edge: SARS-CoV-2 Infection Induces Robust Germinal Center Activity in the Human Tonsil. *J. Immunol.* 2022, 208, 2267–2271. [CrossRef]
- 128. Swank, Z.; Senussi, Y.; Manickas-Hill, Z.; Yu, X.G.; Li, J.Z.; Alter, G.; Walt, D.R. Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019 Sequelae. *Clin. Infect. Dis.* 2023, 76, e487–e490. [CrossRef] [PubMed]
- 129. An, Y.; He, L.; Xu, X.; Piao, M.; Wang, B.; Liu, T.; Cao, H. Gut microbiota in post-acute COVID-19 syndrome: Not the end of the story. *Front. Microbiol.* **2024**, *15*, 1500890. [CrossRef]

Viruses **2025**, 17, 1310 27 of 35

130. Dziadzko, M.; Belhassen, M.; Van Ganse, E.; Marant-Micallef, C.; Martinez, V.; Aubrun, F. Are Healthcare Resource Utilization Patterns for Pain Management Specific to Post-Acute COVID-19 Syndrome? A Study of Survivors from the First French Pandemic Wave. J. Clin. Med. 2024, 13, 7680. [CrossRef]

- 131. Malioukis, A.; Snead, R.S.; Marczika, J.; Ambalavanan, R. Pathophysiological, Neuropsychological, and Psychosocial Influences on Neurological and Neuropsychiatric Symptoms of Post-Acute COVID-19 Syndrome: Impacts on Recovery and Symptom Persistence. *Biomedicines* 2024, 12, 2831. [CrossRef]
- 132. Mundra, P.; Kailani, Z.; Yaghoobi, M.; Matthews, P.; Tobis, M.; Sadeghian, S.; Albashir, S. Liver injury in post-acute COVID-19 syndrome: A systematic review and meta-analysis of early observational studies. *Can. Liver J.* **2024**, 7, 470–489. [CrossRef] [PubMed]
- 133. Nitulescu, A.; Crisan-Vida, M.; Tudoran, C.; Stoicu-Tivadar, L. ML-Based Framework to Predict the Severity of the Symptomatology in Patients with Post-Acute COVID-19 Syndrome. *Stud. Health Technol. Inform.* **2024**, 321, 99–103. [PubMed]
- 134. Ovechkin, A.; Moshonkina, T.; Shamantseva, N.; Lyakhovetskii, V.; Suthar, A.; Tharu, N.; Ng, A.; Gerasimenko, Y. Spinal Neuromodulation for Respiratory Rehabilitation in Patients with Post-Acute COVID-19 Syndrome. *Life* **2024**, *14*, 1518. [CrossRef] [PubMed]
- 135. Platschek, B.; Boege, F. The Post-Acute COVID-19-Vaccination Syndrome in the Light of Pharmacovigilance. *Vaccines* **2024**, 12, 1378. [CrossRef]
- 136. Salvador-Ruiz, A.J.; Moral-Munoz, J.A.; Salazar, A.; Lucena-Anton, D.; De Sola, H.; Failde, I.; Duenas, M. Enhancing exercise intervention for patients with post-acute COVID-19 syndrome using mobile health technology: The COVIDReApp randomised controlled trial protocol. *Digit. Health* **2024**, *10*, 20552076241247936. [CrossRef]
- 137. Singh, S.; Srivastava, N.K.; Yadav, R.; Paul, S.; Gupta, S.; Sankalp; Dixit, P. Acute gastrointestinal and post-acute COVID-19 gastrointestinal syndrome assessment on the Gastrointestinal Symptom Rating Scale scoring system: A questionnaire-based survey. *J. Family Med. Prim. Care* 2024, 13, 5787–5798. [CrossRef]
- 138. Brandao, M.L.; Hermsdorff, H.H.M.; Leal, A.C.G.; Bressan, J.; Pimenta, A.M. Vaccination and food consumption: Association with Post-Acute COVID-19 Syndrome in Brazilian adults (CUME Study). *Front. Nutr.* **2025**, *12*, 1549747. [CrossRef]
- 139. Dai, J.; He, F.; Chen, Q.; Li, Q.; Zhao, L.; Du, Y. Animal models of post-acute COVID-19 syndrome: A call for longitudinal animal studies. *Front. Immunol.* **2025**, *16*, 1521029. [CrossRef]
- 140. Fallah, A.; Sedighian, H.; Kachuei, R.; Fooladi, A.A.I. Human microbiome in post-acute COVID-19 syndrome (PACS). *Curr. Res. Microb. Sci.* **2025**, *8*, 100324. [CrossRef]
- 141. Hazumi, M.; Kataoka, M.; Narita, Z.; Usuda, K.; Okazaki, E.; Nishi, D. Psychological distress after COVID-19 recovery and subsequent prolonged post-acute COVID-19 syndrome: A longitudinal study with one-year follow-up in Japan. *J. Psychosom. Res.* **2025**, *196*, 112323. [CrossRef]
- 142. Huang, L.W.; Li, H.M.; He, B.; Wang, X.B.; Zhang, Q.Z.; Peng, W.X. Prevalence of cardiovascular symptoms in post-acute COVID-19 syndrome: A meta-analysis. *BMC Med.* 2025, 23, 70. [CrossRef] [PubMed]
- 143. Kim, T.H.; Son, Y.; Park, J.; Kim, S.; Jo, H.; Lee, H.; Yon, D.K. Post-Acute Sequelae of COVID-19 on Irritable Bowel Syndrome in Individuals With Mental Illness in South Korea: A Population-Based Cohort Study. *J. Med. Virol.* 2025, 97, e70345. [CrossRef] [PubMed]
- 144. Kok, L.H.J.; Gu, J.T.; Kung, J.T.Y.; Liang, S.S.; Gonzalez, P.C.; Toh, F.M.; Sin, E.; Fong, K.N.K. User experiences of patients with post-acute COVID-19 syndrome receiving occupational therapy telerehabilitation. *Front. Hum. Neurosci.* **2025**, *19*, 1551631. [CrossRef] [PubMed]
- 145. Li, Z.; Liu, Y.; Ding, W.; Liu, Y.; Li, W.; Guan, S.; Liu, X.; Wang, G.; Liu, Q.; Jiang, C.; et al. Food and medicine homology: A potential nutritional intervention strategy for post-acute COVID-19 syndrome. *Front. Pharmacol.* **2025**, *16*, 1588037. [CrossRef]
- 146. Patel, V.; Korsun, M.; Cervia, J. Protective effects of booster dose of SARS-COV-2 vaccination against post-acute COVID-19 syndrome: A systematic review. *J. Investig. Med.* **2025**. [CrossRef]
- 147. Peter, R.S.; Nieters, A.; Gopel, S.; Merle, U.; Steinacker, J.M.; Deibert, P.; Friedmann-Bette, B.; Niess, A.; Muller, B.; Schilling, C.; et al. Persistent symptoms and clinical findings in adults with post-acute sequelae of COVID-19/post-COVID-19 syndrome in the second year after acute infection: A population-based, nested case-control study. *PLoS Med.* **2025**, 22, e1004511. [CrossRef]
- 148. Rajai Firouzabadi, S.; Mohammadi, I.; Alinejadfard, M.; Shafiee, A. E-cigarettes are not associated with post-acute COVID-19 syndrome among US adults. *Sci. Rep.* **2025**, *15*, 2870. [CrossRef]
- 149. Sandoval, A.; Li, M.; Jason, L.A. Two neurocognitive domains identified for patients with myalgic encephalomyelitis/chronic fatigue syndrome and post-acute sequelae of COVID-19. *Front. Neurol.* **2025**, *16*, 1612548. [CrossRef]
- 150. Saunders, D.; Arnold, T.B.; Lavender, J.M.; Bi, D.; Alcover, K.; Hellwig, L.D.; Leazer, S.T.; Mohammed, R.; Markos, B.; Perera, K.; et al. Comparative cohort study of post-acute COVID-19 infection with a nested, randomized controlled trial of ivabradine for those with postural orthostatic tachycardia syndrome (the COVIVA study). *Front. Neurol.* **2025**, *16*, 1550636. [CrossRef]

Viruses **2025**, 17, 1310 28 of 35

151. Sugihara, J.; Iwamura, C.; Tateishi, T.; Hosoya, T.; Shimada, S.; Hirahara, K.; Yasuda, S.; Miyazaki, Y. Prolonged high Myl9 levels are associated with the pathogenesis and respiratory symptom of post-acute COVID-19 syndrome: A 6-month follow-up study. *Clinics* 2025, *80*, 100584. [CrossRef] [PubMed]

- 152. Tobi, M.; Chaudhari, D.; Ryan, E.P.; Rossi, N.F.; Koka, O.; Baxter, B.; Tipton, M.; Dutt, T.S.; Tobi, Y.; McVicker, B.; et al. Immune Signatures in Post-Acute Sequelae of COVID-19 (PASC) and Myalgia/Chronic Fatigue Syndrome (ME/CFS): Insights from the Fecal Microbiome and Serum Cytokine Profiles. *Biomolecules* **2025**, *15*, 928. [CrossRef]
- 153. Wu, J.S.; Xu, C.Y.; Mo, S.M.; Wu, X.M.; Du, Z.B.; Che, L.; Zhang, Y.L.; Yang, K.L.; Li, T.D.; Ge, S.X.; et al. Palmitoylated COX-2(Cys555) reprogrammed mitochondrial metabolism in pyroptotic inflammatory injury in patients with post-acute COVID-19 syndrome. *J. Adv. Res.* 2025. [CrossRef]
- 154. Zhang, Y.; Bharathi, V.; Dokoshi, T.; de Anda, J.; Ursery, L.T.; Kulkarni, N.N.; Nakamura, Y.; Chen, J.; Luo, E.W.C.; Wang, L.; et al. Viral afterlife: SARS-CoV-2 as a reservoir of immunomimetic peptides that reassemble into proinflammatory supramolecular complexes. *Proc. Natl. Acad. Sci. USA* **2024**, *121*, e2300644120. [CrossRef]
- 155. Craddock, V.; Mahajan, A.; Spikes, L.; Krishnamachary, B.; Ram, A.K.; Kumar, A.; Chen, L.; Chalise, P.; Dhillon, N.K. Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19. *J. Med. Virol.* 2023, 95, e28568. [CrossRef]
- 156. Patterson, B.K.; Yogendra, R.; Francisco, E.B.; Guevara-Coto, J.; Long, E.; Pise, A.; Osgood, E.; Bream, J.; Kreimer, M.; Jeffers, D.; et al. Detection of S1 spike protein in CD16+ monocytes up to 245 days in SARS-CoV-2-negative post-COVID-19 vaccine syndrome (PCVS) individuals. *Hum. Vaccines Immunother.* 2025, 21, 2494934. [CrossRef]
- 157. de Melo, B.P.; da Silva, J.A.M.; Rodrigues, M.A.; Palmeira, J.D.F.; Amato, A.A.; Arganaraz, G.A.; Arganaraz, E.R. SARS-CoV-2 Spike Protein and Long COVID-Part 2: Understanding the Impact of Spike Protein and Cellular Receptor Interactions on the Pathophysiology of Long COVID Syndrome. *Viruses* 2025, 17, 619. [CrossRef] [PubMed]
- 158. de Melo, B.P.; da Silva, J.A.M.; Rodrigues, M.A.; Palmeira, J.D.F.; Saldanha-Araujo, F.; Arganaraz, G.A.; Arganaraz, E.R. SARS-CoV-2 Spike Protein and Long COVID-Part 1: Impact of Spike Protein in Pathophysiological Mechanisms of Long COVID Syndrome. *Viruses* 2025, 17, 617. [CrossRef] [PubMed]
- 159. Patterson, B.K.; Francisco, E.B.; Yogendra, R.; Long, E.; Pise, A.; Rodrigues, H.; Hall, E.; Herrera, M.; Parikh, P.; Guevara-Coto, J.; et al. Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection. *Front. Immunol.* **2021**, *12*, 746021. [CrossRef] [PubMed]
- 160. Chansaenroj, J.; Yorsaeng, R.; Puenpa, J.; Wanlapakorn, N.; Chirathaworn, C.; Sudhinaraset, N.; Sripramote, M.; Chalongviriyalert, P.; Jirajariyavej, S.; Kiatpanabhikul, P.; et al. Long-term persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific and neutralizing antibodies in recovered COVID-19 patients. *PLoS ONE* **2022**, *17*, e0267102. [CrossRef]
- 161. Talotta, R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? *Microorganisms* **2022**, *10*, 2452. [CrossRef]
- 162. Tuan, J.J.; Zapata, H.; Barakat, L.; Andrews, L.; Behnegar, A.; Kim, Y.W.; Kayani, J.; Mutic, S.; Ryall, L.; Turcotte, B.; et al. Long-term quantitative assessment of anti-SARS-CoV-2 spike protein immunogenicity (QUASI) after COVID-19 vaccination in older people living with HIV (PWH). *BMC Infect. Dis.* **2022**, 22, 744. [CrossRef]
- 163. Fontes-Dantas, F.L.; Fernandes, G.G.; Gutman, E.G.; De Lima, E.V.; Antonio, L.S.; Hammerle, M.B.; Mota-Araujo, H.P.; Colodeti, L.C.; Araujo, S.M.B.; Froz, G.M.; et al. SARS-CoV-2 Spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. *Cell Rep.* 2023, 42, 112189. [CrossRef] [PubMed]
- 164. Deng, X.; Cui, H.; Liang, H.; Wang, X.; Yu, H.; Wang, J.; Wang, W.; Liu, D.; Zhang, Y.; Dong, E.; et al. SARS-CoV-2 spike protein acts as a beta-adrenergic receptor agonist: A potential mechanism for cardiac sequelae of long COVID. *J. Intern. Med.* **2024**, 296, 291–297. [CrossRef] [PubMed]
- 165. Kiatratdasakul, S.; Noisumdaeng, P.; Niyomdecha, N. Biological factors associated with long COVID and comparative analysis of SARS-CoV-2 spike protein variants: A retrospective study in Thailand. *PeerJ* **2024**, 12, e17898. [CrossRef]
- 166. Brogna, C.; Cristoni, S.; Marino, G.; Montano, L.; Viduto, V.; Fabrowski, M.; Lettieri, G.; Piscopo, M. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. *Proteom. Clin. Appl.* **2023**, *17*, e2300048. [CrossRef]
- 167. Schultheiss, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; Girndt, M.; et al. Liquid biomarkers of macrophage dysregulation and circulating spike protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19. *J. Med. Virol.* 2023, 95, e28364. [CrossRef]
- 168. Peluso, M.J.; Kelly, J.D.; Lu, S.; Goldberg, S.A.; Davidson, M.C.; Mathur, S.; Durstenfeld, M.S.; Spinelli, M.A.; Hoh, R.; Tai, V.; et al. Persistence, Magnitude, and Patterns of Postacute Symptoms and Quality of Life Following Onset of SARS-CoV-2 Infection: Cohort Description and Approaches for Measurement. *Open Forum Infect. Dis.* 2022, 9, ofab640. [CrossRef]
- 169. Naito, T. A second-generation, self-amplifying COVID-19 Vaccine: World's first approval and distribution in the Japanese market with vaccine hesitancy. *Hum. Vaccines Immunother.* **2025**, *21*, 2530291. [CrossRef]

Viruses 2025, 17, 1310 29 of 35

170. Pourmasumi, S.; Nazari, A.; Ahmadi, Z.; Kouni, S.N.; de Gregorio, C.; Koniari, I.; Dousdampanis, P.; Mplani, V.; Plotas, P.; Assimakopoulos, S.; et al. The Effect of Long COVID-19 Infection and Vaccination on Male Fertility; A Narrative Review. *Vaccines* **2022**, *10*, 1982. [CrossRef]

- 171. Tofarides, A.G.; Christaki, E.; Milionis, H.; Nikolopoulos, G.K. Effect of Vaccination against SARS-CoV-2 on Long COVID-19: A Narrative Review. *Life* **2022**, *12*, 2057. [CrossRef]
- 172. Byambasuren, O.; Stehlik, P.; Clark, J.; Alcorn, K.; Glasziou, P. Effect of covid-19 vaccination on long covid: Systematic review. *BMJ Med.* **2023**, 2, e000385. [CrossRef] [PubMed]
- 173. Watanabe, A.; Iwagami, M.; Yasuhara, J.; Takagi, H.; Kuno, T. Protective effect of COVID-19 vaccination against long COVID syndrome: A systematic review and meta-analysis. *Vaccine* **2023**, *41*, 1783–1790. [CrossRef] [PubMed]
- 174. Ceban, F.; Kulzhabayeva, D.; Rodrigues, N.B.; Di Vincenzo, J.D.; Gill, H.; Subramaniapillai, M.; Lui, L.M.W.; Cao, B.; Mansur, R.B.; Ho, R.C.; et al. COVID-19 vaccination for the prevention and treatment of long COVID: A systematic review and meta-analysis. *Brain Behav. Immun.* 2023, 111, 211–229. [CrossRef]
- 175. Ackerson, B.K.; Bruxvoort, K.J.; Qian, L.; Sy, L.S.; Qiu, S.; Tubert, J.E.; Lee, G.S.; Ku, J.H.; Florea, A.; Luo, Y.; et al. Effectiveness and durability of mRNA-1273 BA.4/BA.5 bivalent vaccine (mRNA-1273.222) against SARS-CoV-2 BA.4/BA.5 and XBB sublineages. *Hum. Vaccines Immunother.* **2024**, 20, 2335052. [CrossRef] [PubMed]
- 176. Yamamoto, S.; Matsuda, K.; Maeda, K.; Horii, K.; Okudera, K.; Oshiro, Y.; Inamura, N.; Nemoto, T.; Takeuchi, J.S.; Li, Y.; et al. Preinfection Neutralizing Antibodies, Omicron BA.5 Breakthrough Infection, and Long COVID: A Propensity Score-Matched Analysis. *J. Infect. Dis.* 2023, 228, 1652–1661. [CrossRef]
- 177. Vacharathit, V.; Pluempreecha, M.; Manopwisedjaroen, S.; Srisaowakarn, C.; Srichatrapimuk, S.; Sritipsukho, P.; Sritipsukho, N.; Thitithanyanont, A. Persistent IP-10/CXCL10 dysregulation following mild Omicron breakthrough infection: Immune network signatures across COVID-19 waves and implications for mRNA vaccine outcomes. *Clin. Immunol.* 2025, 278, 110507. [CrossRef]
- 178. Matula, Z.; Beko, G.; Kiraly, V.; Gonczi, M.; Zoka, A.; Barath, A.; Uher, F.; Valyi-Nagy, I. Long-Term SARS-CoV-2-Specific Humoral and T Cell Responses after the BNT162b2 or BBIBP-CorV Booster and the Incidence of Breakthrough Infections among Healthcare Workers. *Vaccines* 2023, 12, 3. [CrossRef]
- 179. Lee, K.Y.; Song, K.H.; Lee, K.H.; Baek, J.Y.; Kim, E.S.; Song, Y.G.; Kim, Y.C.; Park, Y.S.; Ahn, J.Y.; Choi, J.Y.; et al. Persistent differences in the immunogenicity of the two COVID-19 primary vaccines series, modulated by booster mRNA vaccination and breakthrough infection. *Vaccine* 2024, 42, 3953–3960. [CrossRef]
- 180. Drury, R.E.; Camara, S.; Chelysheva, I.; Bibi, S.; Sanders, K.; Felle, S.; Emary, K.; Phillips, D.; Voysey, M.; Ferreira, D.M.; et al. Multi-omics analysis reveals COVID-19 vaccine induced attenuation of inflammatory responses during breakthrough disease. *Nat. Commun.* **2024**, *15*, 3402. [CrossRef]
- 181. Bellizzi, V.; Fordellone, M.; Secondulfo, C.; Chiodini, P.; Bilancio, G. Long-Term Immuno-Response and Risk of Breakthrough Infection After SARS-CoV-2 Vaccination in Kidney Transplantation. *Vaccines* **2025**, *13*, 566. [CrossRef]
- 182. Almanzar, G.; Koosha, K.; Vogt, T.; Stein, A.; Ziegler, L.; Asam, C.; Weps, M.; Schwagerl, V.; Richter, L.; Hepp, N.; et al. Hybrid immunity by two COVID-19 mRNA vaccinations and one breakthrough infection provides a robust and balanced cellular immune response as basic immunity against severe acute respiratory syndrome coronavirus 2. *J. Med. Virol.* **2024**, *96*, e29739. [CrossRef] [PubMed]
- 183. Kent, S.J.; Li, S.; Amarasena, T.H.; Reynaldi, A.; Lee, W.S.; Leeming, M.G.; O'Connor, D.H.; Nguyen, J.; Kent, H.E.; Caruso, F.; et al. Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine in Humans. ACS Nano 2024, 18, 27077–27089. [CrossRef]
- 184. Mueed, A.; Shariq, A.; Ashar, M. Critical appraisal of: "expression of SARS-CoV-2 spike protein in cerebral arteries: Implications for hemorrhagic stroke post-mRNA vaccination". *J. Clin. Neurosci.* **2025**, *136*, 111270. [CrossRef]
- 185. Ota, N.; Itani, M.; Aoki, T.; Sakurai, A.; Fujisawa, T.; Okada, Y.; Noda, K.; Arakawa, Y.; Tokuda, S.; Tanikawa, R. Expression of SARS-CoV-2 spike protein in cerebral Arteries: Implications for hemorrhagic stroke Post-mRNA vaccination. *J. Clin. Neurosci.* **2025**, *136*, 111223. [CrossRef]
- 186. Pateev, I.; Seregina, K.; Ivanov, R.; Reshetnikov, V. Biodistribution of RNA Vaccines and of Their Products: Evidence from Human and Animal Studies. *Biomedicines* **2023**, *12*, 59. [CrossRef]
- 187. Krauson, A.J.; Casimero, F.V.C.; Siddiquee, Z.; Stone, J.R. Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. *NPJ Vaccines* **2023**, *8*, 141. [CrossRef]
- 188. Rzymski, P.; Niedziela, J.; Poniedzialek, B.; Rosinska, J.; Zarebska-Michaluk, D.; Sobala-Szczygiel, B.; Flisiak, R.; Gasior, M.; Jaroszewicz, J. Humoral anti-SARS-CoV-2 response in patients with different long COVID phenotypes. *Virology* **2024**, *596*, 110118. [CrossRef]
- 189. Gomes, S.M.R.; Brito, A.C.S.; Manfro, W.F.P.; Ribeiro-Alves, M.; Ribeiro, R.S.A.; da Cal, M.S.; Lisboa, V.D.C.; Abreu, D.P.B.; Castilho, L.D.R.; Porto, L.; et al. High levels of pro-inflammatory SARS-CoV-2-specific biomarkers revealed by in vitro whole blood cytokine release assay (CRA) in recovered and long-COVID-19 patients. *PLoS ONE* **2023**, *18*, e0283983. [CrossRef]

Viruses **2025**, 17, 1310 30 of 35

190. Augustin, M.; Schommers, P.; Stecher, M.; Dewald, F.; Gieselmann, L.; Gruell, H.; Horn, C.; Vanshylla, K.; Cristanziano, V.D.; Osebold, L.; et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study. *Lancet Reg. Health Eur.* 2021, 6, 100122. [CrossRef] [PubMed]

- 191. Garcia-Abellan, J.; Padilla, S.; Fernandez-Gonzalez, M.; Garcia, J.A.; Agullo, V.; Andreo, M.; Ruiz, S.; Galiana, A.; Gutierrez, F.; Masia, M. Antibody Response to SARS-CoV-2 is Associated with Long-term Clinical Outcome in Patients with COVID-19: A Longitudinal Study. *J. Clin. Immunol.* **2021**, *41*, 1490–1501. [CrossRef] [PubMed]
- 192. Cheng, M.H.; Porritt, R.A.; Rivas, M.N.; Krieger, J.M.; Ozdemir, A.B.; Garcia, G., Jr.; Arumugaswami, V.; Fries, B.C.; Arditi, M.; Bahar, I. A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry in vitro. *Structure* **2021**, *29*, 951–962.e3. [CrossRef] [PubMed]
- 193. Porritt, R.A.; Paschold, L.; Rivas, M.N.; Cheng, M.H.; Yonker, L.M.; Chandnani, H.; Lopez, M.; Simnica, D.; Schultheiss, C.; Santiskulvong, C.; et al. HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. *J. Clin. Investig.* **2021**, *131*, e146614. [CrossRef]
- 194. Dissook, S.; Umsumarng, S.; Mapoung, S.; Semmarath, W.; Arjsri, P.; Srisawad, K.; Dejkriengkraikul, P. Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID. *Front. Med.* 2022, 9, 1072056.
- 195. Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix metalloproteinase-9: Many shades of function in cardiovas-cular disease. *Physiology* **2013**, *28*, 391–403. [CrossRef] [PubMed]
- 196. Bellucci, M.; Bozzano, F.M.; Castellano, C.; Pesce, G.; Beronio, A.; Farshchi, A.H.; Limongelli, A.; Uccelli, A.; Benedetti, L.; De Maria, A. Post-SARS-CoV-2 infection and post-vaccine-related neurological complications share clinical features and the same positivity to anti-ACE2 antibodies. *Front. Immunol.* 2024, 15, 1398028. [CrossRef]
- 197. Coleon, A.; Larrous, F.; Kergoat, L.; Tichit, M.; Hardy, D.; Obadia, T.; Kornobis, E.; Bourhy, H.; de Melo, G.D. Hamsters with long COVID present distinct transcriptomic profiles associated with neurodegenerative processes in brainstem. *Nat. Commun.* 2025, 16, 6714. [CrossRef] [PubMed]
- 198. Chung, J.; Pierce, J.; Franklin, C.; Olson, R.M.; Morrison, A.R.; Amos-Landgraf, J. Translating animal models of SARS-CoV-2 infection to vascular, neurological and gastrointestinal manifestations of COVID-19. *Dis. Model. Mech.* 2025, 18, dmm052086. [CrossRef] [PubMed]
- 199. Pimenta, J.C.; Beltrami, V.A.; Oliveira, B.D.S.; Queiroz-Junior, C.M.; Barsalini, J.; Teixeira, D.C.; de Souza-Costa, L.P.; Lima, A.L.D.; Machado, C.A.; Parreira, B.; et al. Neuropsychiatric sequelae in an experimental model of post-COVID syndrome in mice. *Brain Behav. Immun.* 2025, 128, 16–36. [CrossRef]
- 200. Detrille, A.; Huvelle, S.; van Gils, M.J.; Geara, T.; Pascal, Q.; Snitselaar, J.; Bossevot, L.; Cavarelli, M.; Dereuddre-Bosquet, N.; Relouzat, F.; et al. Whole-body visualization of SARS-CoV-2 biodistribution in vivo by immunoPET imaging in non-human primates. *Nat. Commun.* 2025, 16, 2816. [CrossRef]
- 201. Zhang, Y.; Chen, H.; Li, Y.; Luo, C.; Zhu, Y.; Zhou, X.; Wang, R.; He, J.; Guo, H.; Xu, X.; et al. Animal Models for Long COVID: Current Advances, Limitations, and Future Directions. *J. Med. Virol.* **2025**, *97*, e70237. [CrossRef]
- 202. Vanderheiden, A.; Diamond, M.S. Animal Models of Non-Respiratory, Post-Acute Sequelae of COVID-19. *Viruses* **2025**, *17*, 98. [CrossRef]
- 203. Ivlev, I.; Wagner, J.; Phillips, T.; Treadwell, J.R. Interventions for Long COVID: A Narrative Review. *J. Gen. Intern. Med.* **2025**, *40*, 2005–2023. [CrossRef]
- 204. Herbert, C.; Antar, A.A.R.; Broach, J.; Wright, C.; Stamegna, P.; Luzuriaga, K.; Hafer, N.; McManus, D.D.; Manabe, Y.C.; Soni, A. Relationship Between Acute SARS-CoV-2 Viral Clearance and Long COVID-19 (Long COVID) Symptoms: A Cohort Study. *Clin. Infect. Dis.* 2025, 80, 82–90. [CrossRef] [PubMed]
- 205. Schafer, A.; Leist, S.R.; Gralinski, L.E.; Martinez, D.R.; Winkler, E.S.; Okuda, K.; Hawkins, P.E.; Gully, K.L.; Graham, R.L.; Scobey, D.T.; et al. A Multitrait Locus Regulates Sarbecovirus Pathogenesis. *mBio* 2022, *13*, e0145422. [CrossRef]
- 206. Schafer, A.; Gralinski, L.E.; Leist, S.R.; Hampton, B.K.; Mooney, M.A.; Jensen, K.L.; Graham, R.L.; Agnihothram, S.; Jeng, S.; Chamberlin, S.; et al. Genetic loci regulate Sarbecovirus pathogenesis: A comparison across mice and humans. *Virus Res.* **2024**, 344, 199357. [CrossRef] [PubMed]
- 207. Leist, S.R.; Schafer, A.; Risemberg, E.L.; Bell, T.A.; Hock, P.; Zweigart, M.R.; Linnertz, C.L.; Miller, D.R.; Shaw, G.D.; de Villena, F.P.M.; et al. Sarbecovirus disease susceptibility is conserved across viral and host models. *Virus Res.* **2024**, 346, 199399. [CrossRef] [PubMed]
- 208. Singh, M.; Pushpakumar, S.; Bard, N.; Zheng, Y.; Homme, R.P.; Mokshagundam, S.P.L.; Tyagi, S.C. Simulation of COVID-19 symptoms in a genetically engineered mouse model: Implications for the long haulers. *Mol. Cell Biochem.* **2023**, 478, 103–119. [CrossRef]

Viruses 2025, 17, 1310 31 of 35

209. Zayou, L.; Prakash, S.; Dhanushkodi, N.R.; Quadiri, A.; Ibraim, I.C.; Singer, M.; Salem, A.; Shaik, A.M.; Suzer, B.; Chilukuri, A.; et al. A multi-epitope/CXCL11 prime/pull coronavirus mucosal vaccine boosts the frequency and the function of lung-resident memory CD4(+) and CD8(+) T cells and enhanced protection against COVID-19-like symptoms and death caused by SARS-CoV-2 infection. *J. Virol.* 2023, 97, 1–13. [CrossRef]

- 210. Prakash, S.; Dhanushkodi, N.R.; Zayou, L.; Ibraim, I.C.; Quadiri, A.; Coulon, P.G.; Tifrea, D.F.; Suzer, B.; Shaik, A.M.; Chilukuri, A.; et al. Cross-protection induced by highly conserved human B, CD4(+), and CD8(+) T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. *Front. Immunol.* 2024, 15, 1328905. [CrossRef]
- 211. Jansen, E.B.; Orvold, S.N.; Swan, C.L.; Yourkowski, A.; Thivierge, B.M.; Francis, M.E.; Ge, A.; Rioux, M.; Darbellay, J.; Howland, J.G.; et al. After the virus has cleared-Can preclinical models be employed for Long COVID research? *PLoS Pathog.* 2022, 18, e1010741. [CrossRef]
- 212. Lai, Y.J.; Liu, S.H.; Manachevakul, S.; Lee, T.A.; Kuo, C.T.; Bello, D. Biomarkers in long COVID-19: A systematic review. *Front. Med.* 2023, *10*, 1085988. [CrossRef]
- 213. Desbonnet, L.; Konkoth, A.; Laighneach, A.; McKernan, D.; Holleran, L.; McDonald, C.; Morris, D.W.; Donohoe, G.; Kelly, J. Dual hit mouse model to examine the long-term effects of maternal immune activation and post-weaning social isolation on schizophrenia endophenotypes. *Behav. Brain Res.* 2022, 430, 113930. [CrossRef]
- 214. Kendall, L.V.; Boyd, T.D.; Sillau, S.H.; Bosco-Lauth, A.; Markham, N.; Fong, D.; Clarke, P.; Tyler, K.L.; Potter, H. GM-CSF Promotes Immune Response and Survival in a Mouse Model of COVID-19. *Res. Sq.* **2022**. [CrossRef]
- 215. Erickson, M.A.; Logsdon, A.F.; Rhea, E.M.; Hansen, K.M.; Holden, S.J.; Banks, W.A.; Smith, J.L.; German, C.; Farr, S.A.; Morley, J.E.; et al. Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1 variants of concern induce neuroinflammation which is accentuated in a mouse model of Alzheimer's disease. *Brain Behav. Immun.* 2023, 109, 251–268. [CrossRef]
- 216. Choi, C.Y.; Gadhave, K.; Villano, J.; Pekosz, A.; Mao, X.; Jia, H. Generation and characterization of a humanized ACE2 mouse model to study long-term impacts of SARS-CoV-2 infection. *J. Med. Virol.* **2024**, *96*, e29349. [CrossRef]
- 217. Jeon, D.; Kim, S.H.; Kim, J.; Jeong, H.; Uhm, C.; Oh, H.; Cho, K.; Cho, Y.; Park, I.H.; Oh, J.; et al. Discovery of a new long COVID mouse model via systemic histopathological comparison of SARS-CoV-2 intranasal and inhalation infection. *Biochim. Biophys. Acta Mol. Basis Dis.* 2024, 1870, 167347. [CrossRef] [PubMed]
- 218. Gao, Y.; Cai, C.; Adamo, S.; Biteus, E.; Kamal, H.; Dager, L.; Miners, K.L.; Llewellyn-Lacey, S.; Ladell, K.; Amratia, P.S.; et al. Identification of soluble biomarkers that associate with distinct manifestations of long COVID. *Nat. Immunol.* **2025**, *26*, 692–705. [CrossRef]
- 219. Russelli, G.; Pizzillo, P.; Iannolo, G.; Barbera, F.; Tuzzolino, F.; Liotta, R.; Traina, M.; Vizzini, G.; Gridelli, B.; Badami, E.; et al. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. *PLoS ONE* **2017**, *12*, e0181683. [CrossRef]
- 220. Chen, J.; Zhou, T.; Zhang, Y.; Luo, S.; Chen, H.; Chen, D.; Li, C.; Li, W. The reservoir of latent HIV. Front. Cell. Infect. Microbiol. 2022, 12, 945956. [CrossRef] [PubMed]
- 221. Martinez-Roman, P.; Crespo-Bermejo, C.; Valle-Millares, D.; Lara-Aguilar, V.; Arca-Lafuente, S.; Martin-Carbonero, L.; Ryan, P.; de Los Santos, I.; Lopez-Huertas, M.R.; Palladino, C.; et al. Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance. *J. Clin. Med.* 2022, 11, 3579. [CrossRef]
- 222. Sigal, A.; Neher, R.A.; Lessells, R.J. The consequences of SARS-CoV-2 within-host persistence. *Nat. Rev. Microbiol.* **2025**, 23, 288–302. [CrossRef] [PubMed]
- 223. de Assumpcao, L.; Romeo, B.G.P.; Guerra, J.C.C.; Camargo, L.F.A.; Nagaoka, M.A.; Amgarten, D.E.; Dorlass, E.G.; Petroni, R.C.; Cardoso, A.C.A.; Ruiz, R.M.; et al. Case report: Persistent COVID-19 in a patient with B cell lymphoma refractory to antiviral treatment due to resistance to Remdesivir. *IDCases* 2025, *40*, e02199. [CrossRef]
- 224. Haslam, A.; Prasad, V. A Systematic Review of Nirmatrelvir/Ritonavir and Molnupiravir for the Treatment of Coronavirus Disease 2019. *Open Forum Infect. Dis.* **2024**, *11*, ofae497. [CrossRef]
- 225. Preiss, A.; Bhatia, A.; Aragon, L.V.; Baratta, J.M.; Baskaran, M.; Blancero, F.; Brannock, M.D.; Chew, R.F.; Diaz, I.; Fitzgerald, M.; et al. Effect of Paxlovid treatment during acute COVID-19 on Long COVID onset: An EHR-based target trial emulation from the N3C and RECOVER consortia. *PLoS Med.* **2025**, 22, e1004711.
- 226. Velati, D.; Puoti, M. Real-world experience with therapies for SARS-CoV-2: Lessons from the Italian COVID-19 studies. *Infez. Med.* 2025, 33, 64–75. [PubMed]
- 227. Sweeney, D.A.; Kalil, A.C. Guidelines without borders: The case for JAK inhibitors as the first-line immunomodulator COVID-19 treatment. *Lancet Respir. Med.* **2025**, *13*, 478–480. [CrossRef]
- 228. Gmizic, I.I.; Barac, A.; Todorovic, N.; Sabanovic, M.; Kekic, N.; Boskovic, N.; Vujovic, A.; Nikolic, N.; Knezevic, N.; Milosevic, I.; et al. Molnupiravir's real-world effectiveness in COVID-19 outpatients at high risk of severe disease: A single-center study. *J. Infect. Dev. Ctries.* **2024**, *18*, 694–700. [CrossRef]

Viruses **2025**, 17, 1310 32 of 35

229. Harris, V.; Holmes, J.; Gbinigie-Thompson, O.; Rahman, N.M.; Richards, D.B.; Hayward, G.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; et al. Health outcomes 3 months and 6 months after molnupiravir treatment for COVID-19 for people at higher risk in the community (PANORAMIC): A randomised controlled trial. *Lancet Infect. Dis.* 2025, 25, 68–79. [CrossRef] [PubMed]

- 230. Peluso, M.J.; Deeks, S.G. Mechanisms of long COVID and the path toward therapeutics. *Cell* **2024**, *187*, 5500–5529. [CrossRef] [PubMed]
- 231. Yu, T.; Tian, C.; Chu, S.; Zhou, H.; Zhang, Z.; Luo, S.; Hu, D.; Fan, H. COVID-19 patients benefit from early antiviral treatment: A comparative, retrospective study. *J. Med. Virol.* **2020**, *92*, 2675–2683. [CrossRef]
- 232. Du, Z.; Wang, L.; Bai, Y.; Liu, Y.; Lau, E.H.Y.; Galvani, A.P.; Krug, R.M.; Cowling, B.J.; Meyers, L.A. A retrospective cohort study of Paxlovid efficacy depending on treatment time in hospitalized COVID-19 patients. *Elife* 2024, 13, e89801. [CrossRef] [PubMed]
- 233. Butler, C.C.; Hobbs, F.D.R.; Gbinigie, O.A.; Rahman, N.M.; Hayward, G.; Richards, D.B.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): An open-label, platform-adaptive randomised controlled trial. *Lancet* 2023, 401, 281–293. [CrossRef]
- 234. Group, R.C. Molnupiravir or nirmatrelvir-ritonavir plus usual care versus usual care alone in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. *Lancet Infect. Dis.* **2025**, *25*, 1000–1010.
- 235. Baldwin, K.; Wanson, A.; Gilecki, L.A.; Dalton, C.; Peters, E.; Halpape, K. Intranasal ketamine as a treatment for psychiatric complications of long COVID: A case report. *Ment. Health Clin.* **2023**, *13*, 239–243. [CrossRef]
- 236. Denton, L.; Kapuganti, A.; Kim, S. A case report on the effects of COVID-19 on ANC monitoring in a patient on long-term clozapine treatment. *Ment. Health Clin.* **2023**, *13*, 190–192. [CrossRef]
- 237. Taube, M. Depression and brain fog as long-COVID mental health consequences: Difficult, complex and partially successful treatment of a 72-year-old patient-A case report. *Front. Psychiatry* **2023**, *14*, 1153512. [CrossRef]
- 238. Igarashi, S.; Okita, K.; Hayashi, D.; Yamazaki, R.; Matsuda, Y.; Noda, T.; Watanabe, K.; Kito, S. Neuroinflammatory Alterations in Treatment-Resistant Depression Secondary to Long COVID by Repetitive Transcranial Magnetic Stimulation (rTMS): A Case Report. *Psychiatr. Res. Clin. Pract.* 2024, 6, 63–64. [CrossRef]
- 239. Kawalec, A.; Cichon, L.; Wilczynski, K.; Janas-Kozik, M. First onset of persistent neutropenia in patient undergoing long-term clozapine treatment after vaccination against COVID-19 and SARS-CoV-2 infection in short interval—A case report. *Psychiatr. Pol.* 2025, 59, 77–87. [CrossRef] [PubMed]
- 240. Takezawa, H. Successful treatment of long-COVID postural tachycardia syndrome with epipharyngeal abrasive therapy in an adolescent patient: A case report. *Medicine* **2025**, *104*, e43333. [CrossRef] [PubMed]
- 241. Xie, Y.; Choi, T.; Al-Aly, Z. Association of Treatment With Nirmatrelvir and the Risk of Post-COVID-19 Condition. *JAMA Intern. Med.* 2023, 183, 554–564. [CrossRef]
- 242. Li, H.; Gao, M.; You, H.; Zhang, P.; Pan, Y.; Li, N.; Qin, L.; Wang, H.; Li, D.; Li, Y.; et al. Association of Nirmatrelvir/Ritonavir Treatment on Upper Respiratory Severe Acute Respiratory Syndrome Coronavirus 2 Reverse Transcription-Polymerase Chain Reaction (SARS-Cov-2 RT-PCR) Negative Conversion Rates Among High-Risk Patients With Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2023, 76, e148–e154. [PubMed]
- 243. Decker, S.; Xiao, S.; Dillen, C.; Schumacher, C.M.; Milstone, A.M.; Frieman, M.; Debes, A.K. Association of Nirmatrelvir/Ritonavir Treatment and COVID-19-Neutralizing Antibody Titers in a Longitudinal Health Care Worker Cohort. *Open Forum Infect. Dis.* **2024**, *11*, ofad625. [CrossRef]
- 244. Segura Fabrega, A.; Perez Catalan, I.; Gomez Alfaro, I.; Garcia Munoz, S.; Roig Marti, C.; Rodriguez Lozano, N.; Folgado Escudero, S.; Varea Villanueva, M.; Gascon Buj, A.; Torres Garcia, M.; et al. Association of nirmatrelvir/ritonavir and remdesivir as treatment for SARS-CoV-2 infection in immunocompromised patients with hematologic malignancies. Series of four cases. *Rev. Esp. Quimioter.* 2023, 36, 655–657. [CrossRef]
- 245. Caffrey, A.R.; Appaneal, H.J.; Lopes, V.V.; Lavoie, T.; Puzniak, L.; Zasowski, E.J.; Jodar, L.; Arham, I.; LaPlante, K.L.; McLaughlin, J.M. Association between nirmatrelvir/ritonavir treatment and antibiotic prescribing in the outpatient setting among patients with COVID-19. *Microbiol. Spectr.* 2025, 13, e0320924. [CrossRef]
- 246. Uversky, V.N.; Redwan, E.M.; Makis, W.; Rubio-Casillas, A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. *Vaccines* **2023**, *11*, 991. [CrossRef]
- 247. Maslinska, M.; Dmowska-Chalaba, J.; Jakubaszek, M. The Role of IgG4 in Autoimmunity and Rheumatic Diseases. *Front. Immunol.* **2021**, *12*, 787422. [CrossRef] [PubMed]
- 248. Kerr, C.M.; Pfannenstiel, J.J.; Alhammad, Y.M.; O'Connor, J.J.; Ghimire, R.; Shrestha, R.; Khattabi, R.; Saenjamsai, P.; Parthasarathy, S.; McDonald, P.R.; et al. Mutation of a highly conserved isoleucine residue in loop 2 of several beta-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. *J. Virol.* 2024, 98, e0131324. [CrossRef]

Viruses 2025, 17, 1310 33 of 35

249. Pereira Neto, T.A.; Zmasek, C.; Avalos, L.; Sidney, J.; Trevizani, R.; Phillips, E.; Mallal, S.; Frazier, A.; Tan, G.S.; Scheuermann, R.H.; et al. Highly conserved Betacoronavirus sequences are broadly recognized by human T cells. *Cell* 2025, S0092-8674(25)00804-9. [CrossRef] [PubMed]

- 250. Williams, E.P.; Nandi, A.; Nam, V.; Allen, L.J.S.; Trindade, A.A.; Kosiewicz, M.M.; Jonsson, C.B. Modeling the Immune Response for Pathogenic and Nonpathogenic Orthohantavirus Infections in Human Lung Microvasculature Endothelial Cells. *Viruses* 2023, 15, 1806. [CrossRef] [PubMed]
- 251. Peng, H.Y.; Song, J. T Cells in Pathogenic Infections. Pathogens 2023, 12, 578. [CrossRef]
- 252. Huot, N.; Rascle, P.; Tchitchek, N.; Wimmer, B.; Passaes, C.; Contreras, V.; Desjardins, D.; Stahl-Hennig, C.; Le Grand, R.; Saez-Cirion, A.; et al. Role of NKG2a/c(+)CD8(+) T cells in pathogenic versus non-pathogenic SIV infections. *iScience* 2021, 24, 102314. [CrossRef]
- 253. Rathore, A.P.; St John, A.L. Protective and pathogenic roles for mast cells during viral infections. *Curr. Opin. Immunol.* **2020**, *66*, 74–81. [CrossRef]
- 254. Shingai, M.; Welbourn, S.; Brenchley, J.M.; Acharya, P.; Miyagi, E.; Plishka, R.J.; Buckler-White, A.; Kwong, P.D.; Nishimura, Y.; Strebel, K.; et al. The Expression of Functional Vpx during Pathogenic SIVmac Infections of Rhesus Macaques Suppresses SAMHD1 in CD4+ Memory T Cells. *PLoS Pathog.* 2015, 11, e1004928. [CrossRef]
- 255. Cremet, L.; Broquet, A.; Brulin, B.; Jacqueline, C.; Dauvergne, S.; Brion, R.; Asehnoune, K.; Corvec, S.; Heymann, D.; Caroff, N. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. *Pathog. Dis.* 2015, 73, ftv065. [CrossRef] [PubMed]
- 256. Kanoh, M.; Uetani, T.; Sakan, H.; Maruyama, S.; Liu, F.; Sumita, K.; Asano, Y. A two-step model of T cell subset commitment: Antigen-independent commitment of T cells before encountering nominal antigen during pathogenic infections. *Int. Immunol.* **2002**, *14*, 567–575. [CrossRef]
- 257. Igarashi, T.; Brown, C.R.; Endo, Y.; Buckler-White, A.; Plishka, R.; Bischofberger, N.; Hirsch, V.; Martin, M.A. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans. *Proc. Natl. Acad. Sci. USA* 2001, 98, 658–663. [CrossRef]
- 258. Martin, P.; Sanchez-Madrid, F. T cells in cardiac health and disease. J. Clin. Investig. 2025, 135, e185218. [CrossRef]
- 259. Kageyama, T.; Matsuo, T.; Kurakake, R.; Sano, T. Relationship between T cells and microbiota in health and disease. *Prog. Mol. Biol. Transl. Sci.* **2020**, *171*, 95–129.
- 260. Bystrom, J.; Clanchy, F.I.L.; Taher, T.E.; Al-Bogami, M.; Ong, V.H.; Abraham, D.J.; Williams, R.O.; Mageed, R.A. Functional and phenotypic heterogeneity of Th17 cells in health and disease. *Eur. J. Clin. Investig.* **2019**, *49*, e13032. [CrossRef] [PubMed]
- 261. Maazi, H.; Akbari, O. Type two innate lymphoid cells: The Janus cells in health and disease. *Immunol. Rev.* **2017**, 278, 192–206. [CrossRef] [PubMed]
- 262. Karthikeyan, B.; Talwar; Arun, K.V.; Kalaivani, S. Evaluation of transcription factor that regulates T helper 17 and regulatory T cells function in periodontal health and disease. *J. Pharm. Bioallied Sci.* **2015**, *7* (Suppl. S2), S672–S676. [CrossRef]
- 263. Crome, S.Q.; Wang, A.Y.; Levings, M.K. Translational mini-review series on Th17 cells: Function and regulation of human T helper 17 cells in health and disease. *Clin. Exp. Immunol.* **2010**, *159*, 109–119. [CrossRef] [PubMed]
- 264. Louten, J.; Boniface, K.; de Waal Malefyt, R. Development and function of TH17 cells in health and disease. *J. Allergy Clin. Immunol.* 2009, 123, 1004–1011. [CrossRef]
- 265. Cosmi, L.; Annunziato, F.; Galli, M.I.G.; Maggi, R.M.E.; Nagata, K.; Romagnani, S. CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. *Eur. J. Immunol.* 2000, 30, 2972–2979. [CrossRef] [PubMed]
- 266. Shohrati, M.; Abedi, F.; Bagheri, M.; Sahebkar, A. Effects of curcumin on vascular smooth muscle cells: Implications for health and disease. *Pharmacol. Rep.* **2025**, *77*, 1232–1246. [CrossRef]
- 267. Schwabe, R.F.; Brenner, D.A. Hepatic stellate cells: Balancing homeostasis, hepatoprotection and fibrogenesis in health and disease. *Nat. Rev. Gastroenterol. Hepatol.* **2025**, 22, 481–499. [CrossRef]
- 268. Sarmento-Cabral, A.; Fuentes-Fayos, A.C.; Ordonez, F.M.; Leon-Gonzalez, A.J.; Martinez-Fuentes, A.J.; Gahete, M.D.; Luque, R.M. From pituitary cells to prostate gland in health and disease: Direct and indirect endocrine connections. *Rev. Endocr. Metab. Disord.* 2025, 26, 187–203. [CrossRef]
- 269. Royzman, D.; Dorrie, J.; Heiss, A.; Sinner, P.; Peckert-Maier, K.; Schaft, N.; Sadeghi Shermeh, A.; Strack, A.; Wild, A.; Steinkasserer, A. The Biology of Dendritic Cells: In Health and Disease. *Adv. Exp. Med. Biol.* **2025**, *1476*, 1–30.
- 270. Ramachandran, P. Hepatic stellate cells regulate multiple aspects of hepatocyte function in health and disease. *J. Hepatol.* **2025**, *83*, 803–804. [CrossRef]
- 271. Papa, V.; Li Pomi, F.; Di Gioacchino, M.; Mangifesta, R.; Borgia, F.; Gangemi, S. Mast Cells and Microbiome in Health and Disease. *Front. Biosci.* (*Landmark Ed.*) **2025**, *30*, 26283. [CrossRef] [PubMed]

Viruses 2025, 17, 1310 34 of 35

272. Karadima, E.; Chavakis, T.; Alexaki, V.I. Arginine metabolism in myeloid cells in health and disease. *Semin. Immunopathol.* **2025**, 47, 11. [CrossRef]

- 273. Hosseini, S.; Thakur, P.; Cedeno, D.L.; Fereidoni, M.; Elahdadi Salmani, M. Editorial: Glial cells in health and disease: Impacts on neural circuits and plasticity. *Front. Cell Neurosci.* **2025**, *19*, 1569725. [CrossRef] [PubMed]
- 274. Frey, H.C.; Sun, X.; Oudeif, F.; Corona, D.L.; He, Z.; Won, T.; Schultz, T.L.; Carruthers, V.B.; Laouar, A.; Laouar, Y. A membrane lipid signature unravels the dynamic landscape of group 1 innate lymphoid cells across the health-disease continuum. *iScience* 2025, 28, 112043. [CrossRef]
- 275. Fliesser, E.; Jandl, K.; Chen, S.H.; Wang, M.T.; Schupp, J.C.; Kuebler, W.M.; Baker, A.H.; Kwapiszewska, G. Transcriptional signatures of endothelial cells shape immune responses in cardiopulmonary health and disease. *JCI Insight* 2025, 10, e191059. [CrossRef]
- 276. De Backer, E.; Verdoodt, D.; Ponsaerts, P.; Pasciuto, E.; Van Rompaey, V. Cochlear T cells and their role in health and disease: A systematic review. *Autoimmun. Rev.* 2025, 24, 103814. [CrossRef]
- 277. Colucci, F.; Botta, M. Innate Lymphoid Cells in Reproductive Health and Disease. Eur. J. Immunol. 2025, 55, e70007. [CrossRef]
- 278. Chu, Y.; Setayesh, J.; Dumontet, T.; Krumeich, L.; Werner, J.; Moretti, I.F.; De Sousa, K.; Kennedy, C.; La Pensee, C.; Lerario, A.M.; et al. Adrenocortical stem cells in health and disease. *Nat. Rev. Endocrinol.* 2025, 21, 464–481. [CrossRef] [PubMed]
- 279. Checchetto, V.; Reina, S.; Garino, F.M.; Tomasello, M.F. Editorial: Molecular basis of the energy management in cells: Implications in health and disease. *Front. Mol. Biosci.* **2025**, *12*, 1578972. [CrossRef]
- 280. Charles, N.; Blank, U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. *Immunol. Rev.* **2025**, *331*, e70024. [CrossRef] [PubMed]
- 281. Blunt, M.D. NK Cells in Health and Disease. Biomedicines 2025, 13, 1312. [CrossRef]
- 282. Biswal, S.; Borgonovo, J.E.; Freites, C.L.; Martinez-Cerdeno, V.; Mishra, R.; Maurya, S.K.; Munoz, E.M. Editorial: Community series in trends in neuroimmunology: Cross-talk between brain-resident and peripheral immune cells in both health and disease, volume II. *Front. Immunol.* **2025**, *16*, 1644278. [CrossRef]
- 283. Bai, X.; Ihara, E.; Tanaka, Y.; Minoda, Y.; Wada, M.; Hata, Y.; Esaki, M.; Ogino, H.; Chinen, T.; Ogawa, Y. From bench to bedside: The role of gastrointestinal stem cells in health and disease. *Inflamm. Regen.* **2025**, *45*, 15. [CrossRef]
- 284. An, C.; Jiang, C.; Pei, W.; Li, A.; Wang, M.; Wang, Y.; Wang, H.; Zuo, L. Intestinal epithelial cells in health and disease. *Tissue Barriers* 2025, 22, 2504744. [CrossRef]
- 285. Zhang, Y.; Yang, L.; Yang, D.; Cai, S.; Wang, Y.; Wang, L.; Li, Y.; Li, L.; Yin, T.; Diao, L. Understanding the heterogeneity of natural killer cells at the maternal-fetal interface: Implications for pregnancy health and disease. *Mol. Hum. Reprod.* **2024**, *30*, gaae040. [CrossRef]
- 286. Medina-Arellano, A.E.; Albert-Garay, J.S.; Medina-Sanchez, T.; Fonseca, K.H.; Ruiz-Cruz, M.; Ochoa-de la Paz, L. Muller cells and retinal angiogenesis: Critical regulators in health and disease. *Front. Cell Neurosci.* **2024**, *18*, 1513686. [CrossRef] [PubMed]
- 287. Galow, A.M.; Agriesti, F. Advances in Stem Cell Research-Insights from the Special Issue "Stem Cells in Health and Disease 2.0". *Int. J. Mol. Sci.* **2024**, 25, 13364. [CrossRef] [PubMed]
- 288. Proal, A.D.; VanElzakker, M.B. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. *Front. Microbiol.* **2021**, *12*, 698169. [CrossRef]
- 289. Chentoufi, A.A.; Prakash, S.; Vahed, H.; Karan, S.; Quadiri, A.; Nesburn, A.; BenMohamed, L. A Tissue-Targeted Prime/Pull/Keep Therapeutic Herpes Simplex Virus Vaccine Protect Against Recurrent Ocular Herpes Infection and Disease in HLA-A*0201 Transgenic Rabbits. J. Virol. 2025, 345, e00135-25. [CrossRef] [PubMed]
- 290. Quadiri, A.; Lekbach, L.; ELhoucine, E.; Prakash, S.; Vahed, H.; Karen, S.; Rehman, A.; BenMohamed, L. The Path Towards Effective Long-Lasting Tissue-Targeted Prime/Pull/Keep Herpes Simplex Therapeutic Vaccines. *Vaccines* 2025, 13, 908. [CrossRef]
- 291. Hany, M.; Sheta, E.; Talha, A.; Anwar, M.; Selima, M.; Gaballah, M.; Zidan, A.; Ibrahim, M.; Agayby, A.S.S.; Abouelnasr, A.A.; et al. Incidence of persistent SARS-CoV-2 gut infection in patients with a history of COVID-19: Insights from endoscopic examination. *Endosc. Int. Open* **2024**, *12*, E11–E22. [CrossRef]
- 292. Swank, Z.; Borberg, E.; Chen, Y.; Senussi, Y.; Chalise, S.; Manickas-Hill, Z.; Yu, X.G.; Li, J.Z.; Alter, G.; Henrich, T.J.; et al. Measurement of circulating viral antigens post-SARS-CoV-2 infection in a multicohort study. *Clin. Microbiol. Infect.* **2024**, *30*, 1599–1605. [CrossRef]
- 293. Abbasi, A.; Sharma, R.; Hansen, N.; Pirrotte, P.; Stringer, W.W. Possible long COVID biomarker: Identification of SARC-CoV-2 related protein(s) in Serum Extracellular Vesicles. *Infection*. **2025**. [CrossRef] [PubMed]
- 294. Zeng, G. Re: 'Measurement of circulating viral antigens post-SARS-CoV-2 infection in a multicohort study' by Swank et al. *Clin. Microbiol. Infect.* **2025**, *31*, 483. [CrossRef]
- 295. Swank, Z.; Karlson, E.W.; Walt, D.R. 'Measurement of circulating viral antigens post-SARS-CoV-2 infection in a multicohort study'—Author's reply. *Clin. Microbiol. Infect.* **2025**, *31*, 484–485. [CrossRef]

Viruses **2025**, 17, 1310 35 of 35

296. Menezes, S.M.; Jamoulle, M.; Carletto, M.P.; Moens, L.; Meyts, I.; Maes, P.; Van Weyenbergh, J. Blood transcriptomic analyses reveal persistent SARS-CoV-2 RNA and candidate biomarkers in post-COVID-19 condition. *Lancet Microbe* **2024**, *5*, 100849. [CrossRef] [PubMed]

297. Abbasi, A.; Gattoni, C.; Iacovino, M.; Ferguson, C.; Tosolini, J.; Singh, A.; Soe, K.K.; Porszasz, J.; Lanks, C.; Rossiter, H.B.; et al. A Pilot Study on the Effects of Exercise Training on Cardiorespiratory Performance, Quality of Life, and Immunologic Variables in Long COVID. *J. Clin. Med.* 2024, 13, 5590. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.